Final exam - Several Variable Calculus (Limited Version)

October 2019

1. Length of a curve

Consider the parametrization of a curve $\boldsymbol{r}(t)=(\cos (t)+1, \sin (t), t)$ with $0 \leq t \leq \frac{\pi}{2}$.

- a) Draw the curve. (1p)
- b) Compute the velocity and the acceleration. (1p)
- c) Compute the length of the curve between $t=0$ and $t=\frac{\pi}{2}$. (3p)

a) Picture

b) Velocity and acceleration

$$
\begin{aligned}
& r^{\prime}(t)=(-\sin (t), \cos (t), 1) \\
& r^{\prime \prime}(t)=(-\cos (t),-\sin (t), 0)
\end{aligned}
$$

c) Length

$$
\int_{0}^{\frac{\pi}{2}} \sqrt{2} d t=\frac{\pi}{\sqrt{2}}
$$

2. Function of several variables

Consider the function $f(x, y)=\frac{x}{y}$.

- a) Draw the 3 level curves $f(x, y)=0, f(x, y)=1$ and $f(x, y)=2$. (2p)
- b) Does the function has a limit at (0,0)? Justify your answer. (3p)
a) The level curves

b) limit

No. Because $\lim _{x \rightarrow 0} f(x, x)=1$ and $\lim _{y \rightarrow 0} f(0, y)=0$.

3. Chain rule

Let $f(x, y)$ be a function from $\mathbb{R}^{2} \rightarrow \mathbb{R}$. Let $g(r, \theta)=f(r \cos (\theta), r \sin (\theta))$.

- a) Find $\frac{\partial}{\partial \theta} g(r, \theta)$. (3p)
- b) Assume that $\frac{\partial f}{\partial x}(0,1)=1$ and $\frac{\partial f}{\partial y}(0,1)=0$. Compute $\frac{\partial}{\partial \theta} g\left(1, \frac{\pi}{2}\right) .(2 p)$
a)
$-\frac{\partial f}{\partial x} r \operatorname{Sin}[\theta]+\frac{\partial f}{\partial y} r \cos [\theta]$
b)
-1

4. Taylor polynomial and extreme points

Let $f(x, y)=x+x^{2}-y^{2}$.

- a) Find the only critical point of $f(x, y)$. (2p)
- b) Is this critical point a local minimal point, local maximal point, or a saddle point? (2p)
- c) Find the second degree Taylor polynomial of $f(x, y)$ at this point. (1p)
a)

The critical points are
$\left\{\left\{-\frac{2}{3}, 0\right\},\{0,0\}\right\}$
b)

The hessian matrix is
$\left(\begin{array}{cc}2+6 x & 0 \\ 0 & -2\end{array}\right)$
At the two critical points, this matrix is
$\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right),\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right)$
So the D_{1} and D_{2} fro the two points are
$\{\{-2,4\},\{2,-4\}\}$

Thus the first is a local maxima and the latter is a saddle point.

> pt0
> $\left\{\left\{-\frac{2}{3}, 0\right\},\{0,0\}\right\}$

$$
\left\{\left\{-\frac{2}{3}, 0, \frac{4}{27}\right\},\{0,0,0\}\right\}
$$

c) Taylor polynomial

At these two points, the corresponding Taylor polynomials are
$\frac{4}{27}-\left(\frac{2}{3}+x\right)^{2}-y^{2}$
$x^{2}-y^{2}$

5. Optimization

Let $f(x, y, z)=x+2 y-3 z$. Find the maximal value and minimal value of $f(x, y, z)$ on the surface $g(x, y, z)=0$ where $g(x, y, z)=x^{2}+4 y^{2}+9 z^{2}-3$.

Solution

Let
$\tau[x, y, z, \lambda]==x+2 y-3 z+\left(-3+x^{2}+4 y^{2}+9 z^{2}\right) \lambda$
(1 points for writing this done).
The critical points of this function are (3 points)
$\left\{\left\{x \rightarrow-1, y \rightarrow-\frac{1}{2}, z \rightarrow \frac{1}{3}, \lambda \rightarrow \frac{1}{2}\right\},\left\{x \rightarrow 1, y \rightarrow \frac{1}{2}, z \rightarrow-\frac{1}{3}, \lambda \rightarrow-\frac{1}{2}\right\}\right\}$

At these two points, $f(x, y, z)$ are
$\{3,-3\}$
So the maximal value is 3 and the minimal value is -3 . (2 points)

6. Double integral

Compute the double integral $\iint_{D}\left(1-y^{2}\right) d A$ over the domain D as shown in the picture. Hint: Integrating x first is slightly easier. (5p)

Solution

$\int_{0}^{1} \int_{y^{3}}^{y}\left(1-y^{2}\right) d x d y$
$\frac{1}{6}$

7. Vector field

Let $\boldsymbol{F}(x, y, z)=\left(y, x, z^{2}\right)$. The vector field \boldsymbol{F} is conservative.

- a) Find the potential function $\boldsymbol{\phi}(x, y, z)$ of \boldsymbol{F}. (3p)
- b) Compute the line integral $\int_{C} \boldsymbol{F} \cdot \boldsymbol{d} \boldsymbol{r}$ along the line from $(0,0,0)$ to $(1,1,1) .(2 p)$
a)
$\phi(x, y, z)=x y+\frac{z^{3}}{3}$
b)

This is simply
$\phi(1,1,1)-\phi(0,0,0)=\frac{4}{3}$

8. Green's theorem

Let $P(x, y)=x^{2}-3 x y+e^{x}+\sin (x)$ and $Q(x, y)=2 x y-y^{2}+\log (y)-\cos (y)$. Let $\boldsymbol{F}(x, y)=(P, Q)$.
Compute $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$, where C is boundary of half-disk $x^{2}+y^{2} \leq 1$ and $y \geq 0$, oriented counterclockwise.

Solution

$$
\int_{0}^{1} \int_{0}^{\pi} r(3 r \cos [\theta]+2 r \sin [\theta]) d \theta d d r=\frac{4}{3}
$$

