Lecture 01 - Vectors and Coordinate Geometry in 3-Space

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Summary

Please watch these videos before the lectures: 1 and 2 .
What we will talk about today

- 10.1: Analytical geometry in Three Dimensions
- 10.5: Quadric Surfaces
- 10.6: Cylindrical and spherical coordinates

What you should already know (review if you forgot)

- P.2: Cartesian Coordinates in the Plane
- P.3: Graphs of Quadratic Equations
- 8.1: Conics
- 8.5: Polar Coordinates and Polar Curves

Introduction of the course

Function

A function is a "machine" or "black box" that maps input into output.

Function

More precisely, a function is a relation between sets that associates to every element of a first set exactly one element of the second set.

Different types of functions

Calculus studies 4 types of functions

1. real-valued functions of a single real variable,
2. vector-valued functions of a single real variable,
3. real-valued functions of a real vector variable, and
4. vector-valued functions of a real vector variable.

Different types of functions

Calculus studies 4 types of functions

1. real-valued functions of a single real variable,
2. vector-valued functions of a single real variable,
3. real-valued functions of a real vector variable, and
4. vector-valued functions of a real vector variable.

Single Variable Calculus covers the first one.

Different types of functions

Calculus studies 4 types of functions

1. real-valued functions of a single real variable,
2. vector-valued functions of a single real variable,
3. real-valued functions of a real vector variable, and
4. vector-valued functions of a real vector variable.

Single Variable Calculus covers the first one.
Several Variable Calculus covers the rest. We will study their limits, continuity, derivatives, integrals, etc.

Example - vector-valued functions of a single real variable

The butterfly curve is defined by the function $t \mapsto(x, y)$ where

$$
\begin{aligned}
& x=\sin (t)\left(e^{\cos (t)}-2 \cos (4 t)-\sin ^{5}\left(\frac{t}{12}\right)\right) \\
& y=\cos (t)\left(e^{\cos (t)}-2 \cos (4 t)-\sin ^{5}\left(\frac{t}{12}\right)\right)
\end{aligned}
$$

Example - real-valued functions of a real vector variable

This plane is defined by the function $(x, y) \mapsto x+y$.

Example - vector-valued functions of a real vector variable

The two planes are defined by the function $(x, y) \mapsto(x+y, x-y)$.

Applications

Several Variable Calculus is widely used in

- biology (population evolution)
- physics (general relativity)
- thermodynamics (air conditioner)
- robotics (motion control)
- aerospace (spaceship trajectory)
- machine learning (algorithm analysis)

Application - The surface of a sphere

The surface of a sphere of radius r is $4 \pi r^{2}$. Where does this number come from?

Application - Catenary bridges

The curve of a suspension bridge is a function of the form $x \mapsto \frac{a}{2}\left(e^{x / a}+e^{-x / a}\right)$.

Given a, how can we compute the length of the bridge?

10.1 Analytic Geometry in Three Dimensions

A point in \mathbb{R}^{3}

$\mathbf{P}=(x, y, z) \in \mathbb{R}^{3}$ can be seen as the coordinates of a point P in the 3 -dimensional space in which we live.

Various geometric objects can be seen as subsets of \mathbb{R}^{3}.

Planes in \mathbb{R}^{3}

Planes in \mathbb{R}^{3}

Planes in \mathbb{R}^{3}

Surface in \mathbb{R}^{3}

Surface in \mathbb{R}^{3}

More complicated example

Intersection of $x^{2}+y^{2}+z^{2}=1$ and $x+y=1$

Topology in $\mathbb{R}^{n} \oplus$

A neighbourhood of a point a :

$$
B_{r}(a)=\{x:|x-a|<r\}
$$

A point a is said to be

- an interior point of S if a has an neighbourhood in S.
- an exterior point of S if a has an neighbourhood outside S.
- a boundary point of S if every neighbourhood of a both contains points in and out S.

Topology in $\mathbb{R}^{n} \oplus$

- A set S is said to be open if every point $a \in S$ has an neighbourhood that lies entirely in S (all points in S are then interior points)
- A set S is said to be closed if its complement is an open set (all boundary points belong to S)

Example: Topology in \mathbb{R}^{2}

Which of these sets are open/closed/none? Can you determine boundary points?

- $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$.
- $B=\left\{(x, y) \in \mathbb{R}^{2}: x<1\right\}$.

Quiz: Topology in \mathbb{R}^{2}

Which of these sets are open/closed/none? Can you determine boundary points?

- $C=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}\right\}$.
- $D=\left\{(x, y) \in \mathbb{R}^{2}: y>x^{2}, y \leq x+1\right\}$.

Quick Review - 10.2, 10.3 Vectors and Cross Product

Fundamental concepts

- Vectors
- Inner/Dot product $\mathbf{u} \cdot \mathbf{v}=v_{1} u_{1}+v_{2} u_{2} \ldots v_{n} u_{n}$.
- Norm/length/absolute value $|\mathbf{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}$.
- Distance - $\left|\overrightarrow{\mathbf{P}_{1} \mathbf{P}_{2}}\right|=\left|\mathbf{P}_{1}-\mathbf{P}_{2}\right|$.
- Orthogonal $-\mathbf{u} \cdot \mathbf{v}=0$.

Cross Product

$\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} and has length equal to the area of the blue shaded parallelogram.

Other things you should know from linear algebra

How to

- Determine if the point $(1,2,3)$ lies in the plane $z=2 x-3 y+4$
- Find a normal vector for the plane $z=2 x-3 y+4$
- Determines if the vectors $(1,2,3)$ and $(-3,-2,-1)$ are orthogonal
- Find a vector that is orthogonal to both $(1,2,0)$ and $(1,-1$, 2)

Quick Review - 10.4 Planes and Lines

Planes in \mathbb{R}^{3}

The equation

$$
a x+b y+c z=0
$$

defines a plane in \mathbb{R}^{3}

Lines in \mathbb{R}^{3}

Given a point $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathbf{v}=(a, b, c)$ in \mathbb{R}^{3}, there is unique line that goes through \mathbf{r}_{0} and is parallel to \mathbf{v}.

Lines in \mathbb{R}^{3}

Given a point $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathbf{v}=(a, b, c)$ in \mathbb{R}^{3}, there is unique line that goes through \mathbf{r}_{0} and is parallel to \mathbf{v}.

Any point \mathbf{r} on this line satisfies $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$

Lines in \mathbb{R}^{3}

Given a point $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathbf{v}=(a, b, c)$ in \mathbb{R}^{3}, there is unique line that goes through \mathbf{r}_{0} and is parallel to \mathbf{v}.

Any point \mathbf{r} on this line satisfies $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$

which is equivalent to

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t .\right\}
$$

10.5 Quadric Surface

Review: Quadratic curves in \mathbb{R}^{2} (P3 and 8.1)

- Parabola

$$
y=x^{2}
$$

- Ellipse

$$
x^{2} / 9+y^{2} / 4=1
$$

- Hyperbola

$$
x^{2} / 9-y^{2} / 4=1
$$

Quadric Surfaces in \mathbb{R}^{3}

The most general second-degree equation in three variables is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z=J
$$

If the equation factorizes,

$$
\left(A_{1} x+B_{1} y+C_{1} z-D_{1}\right)\left(A_{2} x+B_{2} y+C_{2} z-D_{2}\right)=0
$$

then it's just two planes. Otherwise, the equations defines a quadric surface.

Sphere

A sphere is defined by the quadratic equation

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
$$

Sphere

Ellipsoid

An ellipsoid is defined by the quadratic equation

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}+\frac{\left(z-z_{0}\right)^{2}}{c^{2}}=1
$$

Ellipsoid

Cylinder

Examples of cylinders include

Cylinder

Examples of cylinders include

$$
z=x^{2}
$$

Cylinder

Examples of cylinders include

$$
\frac{x^{2}}{2}-y^{2}=1
$$

Paraboloid

A paraboloid is defined by

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \quad \text { or } \quad z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Hyperboloid

A hyperboloid is defined by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \quad \text { or } \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1
$$

10.6 Coordinate systems

Polar system (8.5)

Conversion formula

$$
\begin{array}{ll}
x=r \cos \theta & x^{2}+y^{2}=r^{2} \\
y=r \sin \theta & \tan \theta=\frac{y}{x}
\end{array}
$$

Cylindrical Coordinates

Conversion from cylindrical coordinates $[r, \theta, z]$

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

Cylindrical Coordinates

Conversion from cylindrical coordinates $[r, \theta, z]$

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

Spherical Coordinates

Conversion from spherical coordinates $[R, \varphi, \theta]$

$$
x=R \sin \varphi \cos \theta, \quad y=R \sin \varphi \sin \theta, \quad z=R \cos \varphi
$$

Spherical Coordinates

Conversion from spherical coordinates $[R, \varphi, \theta]$

$$
x=R \sin \varphi \cos \theta, \quad y=R \sin \varphi \sin \theta, \quad z=R \cos \varphi
$$

Quiz

Describe the following areas in polar coordinates

- $x^{2}+y^{2}<1, x>0$.
- $1 \leq x^{2}+y^{2} \leq 2, y \geq|x|$.
- $x^{2}+y^{2} \leq 1, x \leq|y|, y>0$.

Quiz

Describe the following areas in spherical coordinates

$$
x^{2}+y^{2}+z^{2} \leq 1, \quad x \geq 0, \quad y \geq 0, \quad z \geq 0
$$

