Lecture 01 – Vectors and Coordinate Geometry in 3-Space

Several Variable Calculus, 1MA017

Xing Shi Cai Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Please watch these videos before the lectures: 1 and 2. What we will talk about today

- 10.1: Analytical geometry in Three Dimensions
- 10.5: Quadric Surfaces
- 10.6: Cylindrical and spherical coordinates

What you should already know (review if you forgot)

- P.2: Cartesian Coordinates in the Plane
- P.3: Graphs of Quadratic Equations
- 8.1: Conics
- 8.5: Polar Coordinates and Polar Curves

Introduction of the course

Function

A function is a "machine" or "black box" that maps input into output.

Function

More precisely, a function is a relation between sets that associates to every element of a first set exactly one element of the second set.

Calculus studies 4 types of functions

- 1. real-valued functions of a single real variable,
- 2. vector-valued functions of a single real variable,
- 3. real-valued functions of a real vector variable, and
- 4. vector-valued functions of a real vector variable.

Calculus studies 4 types of functions

- 1. real-valued functions of a single real variable,
- 2. vector-valued functions of a single real variable,
- 3. real-valued functions of a real vector variable, and
- 4. vector-valued functions of a real vector variable.

Single Variable Calculus covers the first one.

Calculus studies 4 types of functions

- 1. real-valued functions of a single real variable,
- 2. vector-valued functions of a single real variable,
- 3. real-valued functions of a real vector variable, and
- 4. vector-valued functions of a real vector variable.

Single Variable Calculus covers the first one.

Several Variable Calculus covers the rest. We will study their limits, continuity, derivatives, integrals, etc.

Example — vector-valued functions of a single real variable

The butterfly curve is defined by the function $t \mapsto (x, y)$ where

$$egin{split} x &= \sin(t)\left(e^{\cos(t)} - 2\cos(4t) - \sin^5\left(rac{t}{12}
ight)
ight) \ y &= \cos(t)\left(e^{\cos(t)} - 2\cos(4t) - \sin^5\left(rac{t}{12}
ight)
ight) \end{split}$$

Example — real-valued functions of a real vector variable

This plane is defined by the function $(x, y) \mapsto x + y$.

Example — vector-valued functions of a real vector variable

The two planes are defined by the function $(x, y) \mapsto (x + y, x - y)$.

Several Variable Calculus is widely used in

- biology (population evolution)
- physics (general relativity)
- thermodynamics (air conditioner)
- robotics (motion control)
- aerospace (spaceship trajectory)
- machine learning (algorithm analysis)

Application — The surface of a sphere

The surface of a sphere of radius r is $4\pi r^2$. Where does this number come from?

The curve of a suspension bridge is a function of the form $x\mapsto \frac{a}{2}\left(e^{x/a}+e^{-x/a}\right).$

Given a, how can we compute the length of the bridge?

10.1 Analytic Geometry in Three Dimensions

A point in \mathbb{R}^3

 $\mathbf{P}=(x,y,z)\in\mathbb{R}^3$ can be seen as the coordinates of a point P in the 3-dimensional space in which we live.

Various geometric objects can be seen as subsets of \mathbb{R}^3 .

Planes in \mathbb{R}^3

z = 0

Planes in \mathbb{R}^3

x = y

Surface in \mathbb{R}^3

Surface in \mathbb{R}^3

 $x^2 + y^2 + z^2 = 25$

More complicated example

Intersection of $x^2 + y^2 + z^2 = 1$ and x + y = 1

Topology in \mathbb{R}^n O

A neighbourhood of a point a:

 $B_r(a) = \{x: |x-a| < r\}$

A point a is said to be

- an interior point of S if a has an neighbourhood in S.
- an exterior point of S if a has an neighbourhood outside S.
- a boundary point of S if every neighbourhood of a both contains points in and out S.

Topology in \mathbb{R}^n O

- A set S is said to be open if every point a ∈ S has an neighbourhood that lies entirely in S (all points in S are then interior points)
- A set S is said to be closed if its complement is an open set (all boundary points belong to S)

Which of these sets are open/closed/none? Can you determine boundary points?

- $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$
- $\bullet \ B = \{(x,y) \in \mathbb{R}^2 : x < 1\}.$

Quiz: Topology in $\mathbb{R}^{2^{n}}$

Which of these sets are open/closed/none? Can you determine boundary points?

•
$$C = \{(x, y) \in \mathbb{R}^2 : y = x^2\}.$$

 $\bullet \ D = \{(x,y) \in \mathbb{R}^2: y > x^2, y \leq x+1\}.$

Quick Review — 10.2, 10.3 Vectors and Cross Product

- Vectors
- Inner/Dot product $\mathbf{u} \cdot \mathbf{v} = v_1 u_1 + v_2 u_2 \dots v_n u_n$.
- Norm/length/absolute value $|\mathbf{u}| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$.
- Distance $|\overrightarrow{\mathbf{P}_1\mathbf{P}_2}| = |\mathbf{P}_1 \mathbf{P}_2|.$
- Orthogonal $\mathbf{u} \cdot \mathbf{v} = 0$.

Cross Product

 $\mathbf{u}\times\mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} and has length equal to the area of the blue shaded parallelogram.

How to

- Determine if the point (1,2,3) lies in the plane $\label{eq:constraint} z = 2x 3y + 4$
- Find a normal vector for the plane z = 2x 3y + 4
- Determines if the vectors (1,2,3) and (-3,-2,-1) are orthogonal
- Find a vector that is orthogonal to both (1, 2, 0) and (1, -1, 2)

Quick Review — 10.4 Planes and Lines

Planes in \mathbb{R}^3

The equation

ax + by + cz = 0

defines a plane in \mathbb{R}^3

25

Lines in \mathbb{R}^3

Given a point $\mathbf{r}_0 = (x_0, y_0, z_0)$ and a vector $\mathbf{v} = (a, b, c)$ in \mathbb{R}^3 , there is unique line that goes through \mathbf{r}_0 and is parallel to \mathbf{v} .

Lines in \mathbb{R}^3

Given a point $\mathbf{r}_0 = (x_0, y_0, z_0)$ and a vector $\mathbf{v} = (a, b, c)$ in \mathbb{R}^3 , there is unique line that goes through \mathbf{r}_0 and is parallel to \mathbf{v} .

Any point ${\bf r}$ on this line satisfies ${\bf r}={\bf r}_0+t{\bf v}$

Lines in \mathbb{R}^3

Given a point $\mathbf{r}_0 = (x_0, y_0, z_0)$ and a vector $\mathbf{v} = (a, b, c)$ in \mathbb{R}^3 , there is unique line that goes through \mathbf{r}_0 and is parallel to \mathbf{v} .

Any point ${\bf r}$ on this line satisfies ${\bf r}={\bf r}_0+t{\bf v}$

which is equivalent to

$$\{(x,y,z)\in \mathbb{R}^3 \mid x=x_0+at,\, y=y_0+bt,\, z=z_0+ct.\}$$

10.5 Quadric Surface

Review: Quadratic curves in \mathbb{R}^2 (P3 and 8.1)

Parabola

$$y = x^2$$

Ellipse

$$x^2/9 + y^2/4 = 1$$

Hyperbola

$$x^2/9 - y^2/4 = 1$$

The most general second-degree equation in three variables is

 $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz = J.$

If the equation factorizes,

$$(A_1x+B_1y+C_1z-D_1)(A_2x+B_2y+C_2z-D_2)=0,\\$$

then it's just two planes. Otherwise, the equations defines a quadric surface.

Sphere

A sphere is defined by the quadratic equation

$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$$

Sphere

Ellipsoid

An ellipsoid is defined by the quadratic equation

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} + \frac{(z-z_0)^2}{c^2} = 1$$

Ellipsoid

Cylinder

Examples of cylinders include

Cylinder

Examples of cylinders include

Cylinder

Examples of cylinders include

Paraboloid

A paraboloid is defined by

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
 or $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$

Hyperboloid

A hyperboloid is defined by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \qquad \text{or} \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

10.6 Coordinate systems

Polar system (8.5)

Conversion formula

$$x = r \cos \theta \qquad x^2 + y^2 = r^2$$
$$y = r \sin \theta \qquad \tan \theta = \frac{y}{x}$$

Cylindrical Coordinates

Conversion from cylindrical coordinates $[r,\theta,z]$

$$x = r\cos\theta, \qquad y = r\sin\theta, \qquad z = z$$

Cylindrical Coordinates

Conversion from cylindrical coordinates $[r,\theta,z]$

$$x = r\cos\theta, \qquad y = r\sin\theta, \qquad z = z$$

Spherical Coordinates

Conversion from spherical coordinates $[R,\varphi,\theta]$

 $x = R \sin \varphi \cos \theta, \qquad y = R \sin \varphi \sin \theta, \qquad z = R \cos \varphi.$

Spherical Coordinates

Conversion from spherical coordinates $[R,\varphi,\theta]$

 $x = R \sin \varphi \cos \theta, \qquad y = R \sin \varphi \sin \theta, \qquad z = R \cos \varphi.$

Describe the following areas in polar coordinates

- $\quad \ \ \, x^2+y^2<1, x>0.$
- $1 \le x^2 + y^2 \le 2, y \ge |x|.$
- $x^2 + y^2 \le 1, x \le |y|, y > 0.$

Describe the following areas in spherical coordinates

$$x^2 + y^2 + z^2 \le 1$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

