Lecture 02 – Vector Functions and Curves

Several Variable Calculus, 1MA017

Xing Shi Cai Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Please watch these videos before the lecture: 3 What we will talk about today

- 11.1: Vector Functions of One Variable
- 11.3: Curves and Parametrizations

11.1 Vector function of one variable

Example — vector-valued functions of a single real variable

The butterfly curve is defined by the function $t \mapsto (x, y)$ where

$$egin{split} x &= \sin(t)\left(e^{\cos(t)} - 2\cos(4t) - \sin^5\left(rac{t}{12}
ight)
ight) \ y &= \cos(t)\left(e^{\cos(t)} - 2\cos(4t) - \sin^5\left(rac{t}{12}
ight)
ight) \end{split}$$

We consider functions ${\bf r}:D\mapsto \mathbb{R}^n,$ where D is an interval. We write the components of ${\bf r}(t)$ as

$$\mathbf{r}(t) = \begin{pmatrix} x_1(t), \dots, x_n(t) \end{pmatrix}.$$

Usually in 3-space, we write

$$\mathbf{r}(t) = \left(x(t), y(t), z(t)\right).$$

Concepts: Limit values, continuity, derivatives, integration — The same concepts from one-variable-calculus applied to each component.

Limits of functions

From $\mathbb R$ to $\mathbb R$

The notation $\lim_{x\to c} r(x) = L$ means that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$|x-c|<\delta\implies |r(x)-L|<\varepsilon$$

Limits of functions

From $\mathbb R$ to $\mathbb R$

The notation $\lim_{x\to c} r(x) = L$ means that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$|x-c| < \delta \implies |r(x) - L| < \varepsilon$$

From \mathbb{R} to \mathbb{R}^n

The notation $\lim_{x\to c}\mathbf{r}(x)=\mathbf{L}$ means that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$|x-c| < \delta \implies |\mathbf{r}(x) - \mathbf{L}| < \varepsilon$$

Only difference: $\mathbf{r}(x) - \mathbf{L}$ is now a vector.

Continuity

From $\mathbb R$ to $\mathbb R$

The function r(x) is continuous at a point $a \in D$ means

$$\lim_{x \to a} r(x) = r(a).$$

Continuity

From ${\mathbb R}$ to ${\mathbb R}$

The function r(x) is continuous at a point $a \in D$ means

$$\lim_{x \to a} r(x) = r(a).$$

From \mathbb{R} to \mathbb{R}^n

The function $\mathbf{r}(x)$ is continuous at a point $a \in D$ means

$$\lim_{x \to a} \mathbf{r}(x) = \mathbf{r}(a).$$

This is equivalent to that every component is continuous in one variable sense.

Derivative

The derivative of a function from \mathbb{R} to \mathbb{R}^n is defined by

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

if the limit exists. Note that the derivative is also a vector.

A continuous function \mathbf{r} from an interval in \mathbb{R} to \mathbb{R}^n can be seen as a particle moves along the curve and $\mathbf{r}(t)$ indicates the particle's position at time t.

We can ask: What are the velocity and acceleration of the particle?

A continuous function \mathbf{r} from an interval in \mathbb{R} to \mathbb{R}^n can be seen as a particle moves along the curve and $\mathbf{r}(t)$ indicates the particle's position at time t.

We can ask: What are the velocity and acceleration of the particle? Such a curve can also be seen as a geometric object.

We can ask: What is the tangent line of a curve at a certain point? How long is the curve?

Velocity

From the moving particle point of view, $\mathbf{r}'(a)$ is the velocity at the time a and the second derivative $\mathbf{r}''(a)$ is the acceleration.

Velocity

From the moving particle point of view, $\mathbf{r}'(a)$ is the velocity at the time a and the second derivative $\mathbf{r}''(a)$ is the acceleration.

We often write ${\bf r}'={\bf v}$ and ${\bf r}''={\bf a}.$ Note that both velocity and acceleration are vectors.

The length of \mathbf{v} , i.e., $|\mathbf{v}|$, is called the speed and it is a number.

Tangent line

The tangent line of a curve $\mathbf{r}(t)$ at point t_0 is given by $\mathbf{T}(t) = \mathbf{r}(t_0) + \mathbf{v}(t_0)(t - t_0).$

Tangent line

The tangent line of a curve $\mathbf{r}(t)$ at point t_0 is given by

$$\mathbf{T}(t) = \mathbf{r}(t_0) + \mathbf{v}(t_0)(t - t_0).$$

This only works if the curve is "smooth", i.e., if the velocity (derivative) exists and is not zero.

A particle moves along a curve in the xy-plane such that the position at the time t seconds after the start is

$$\mathbf{r}(t) = (2\cos\pi t, 3\sin\pi t), t \ge 0.$$

Draw the path of the particle and determine the direction of the tangent line at point $\mathbf{r}(2)$.

What is the name of this curve?

Consider the function $\mathbf{r}(t) = (t, t^2, 2)$. Show that the point (-1, 1, 2) is on the curve and find the tangent line of the curve at this point.

Differentiation rules

(a)
$$\frac{d}{dt} \left(\mathbf{u}(t) + \mathbf{v}(t) \right) = \mathbf{u}'(t) + \mathbf{v}'(t)$$

(b)
$$\frac{d}{dt} \left(\lambda(t) \mathbf{u}(t) \right) = \lambda'(t) \mathbf{u}(t) + \lambda(t) \mathbf{u}'(t)$$

(c)
$$\frac{d}{dt} (\mathbf{u}(t) \bullet \mathbf{v}(t)) = \mathbf{u}'(t) \bullet \mathbf{v}(t) + \mathbf{u}(t) \bullet \mathbf{v}'(t)$$

(d)
$$\frac{d}{dt} \left(\mathbf{u}(t) \times \mathbf{v}(t) \right) = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

(e)
$$\frac{d}{dt} \left(\mathbf{u}(\lambda(t)) \right) = \lambda'(t) \mathbf{u}'(\lambda(t))$$

Also, at any point where $\mathbf{u}(t) \neq \mathbf{0}$,

(f)
$$\frac{d}{dt}|\mathbf{u}(t)| = \frac{\mathbf{u}(t) \bullet \mathbf{u}'(t)}{|\mathbf{u}(t)|}$$

EXAMPLE 7

If ${\bf u}$ is three times differentiable, calculate and simplify the triple product derivative

$$\frac{d}{dt} \left(\mathbf{u} \bullet \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2 \mathbf{u}}{dt^2} \right) \right)$$

Solution Using various versions of the Product Rule, we calculate

$$\frac{d}{dt} \left(\mathbf{u} \bullet \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2 \mathbf{u}}{dt^2} \right) \right)$$

= $\frac{d\mathbf{u}}{dt} \bullet \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2 \mathbf{u}}{dt^2} \right) + \mathbf{u} \bullet \left(\frac{d^2 \mathbf{u}}{dt^2} \times \frac{d^2 \mathbf{u}}{dt^2} \right) + \mathbf{u} \bullet \left(\frac{d\mathbf{u}}{dt} \times \frac{d^3 \mathbf{u}}{dt^3} \right)$
= $0 + 0 + \mathbf{u} \bullet \left(\frac{d\mathbf{u}}{dt} \times \frac{d^3 \mathbf{u}}{dt^3} \right) = \mathbf{u} \bullet \left(\frac{d\mathbf{u}}{dt} \times \frac{d^3 \mathbf{u}}{dt^3} \right).$

Let r(t) describe the position of a particle in the xy-plane where it moves at a constant angular velocity ω radians per second in a circle with radius R around the origin.

- Write done the expression for $\mathbf{r}(t)$ if the particle is at the point (R,0) at time t=0 seconds.
- Calculate the velocity $\mathbf{r}'(t)$ and the acceleration $\mathbf{r}''(t)$ of the particle.
- Draw a picture of the particle's trajectory and draw the velocity vector and acceleration vector at a time of your choice.

11.3 Curves and parametrizations

Parametrizations

Parametrization of curves – Define a curve in \mathbb{R}^n as function

$$\mathbf{r}(t) = (x_1(t), \dots, x_n(t)).$$

Practice parametrizations of curves. It is important. ③

The same curve can have many parametrizations. For example,

$$\mathbf{r}(t) = (t, 2t), \qquad t \in [0, 1]$$

and

$$\mathbf{r}(t) = (\sqrt{100t}, 2\sqrt{100t}), \qquad t \in [0, 1/100]$$

give the same curve.

Example: Intersection of two surfaces

Determine a parametrization for the curve given by the intersection of the surface $z = x^2 + y^2 - 1$ and z = 2x.

Determine a parametrization for the curve given by the intersection of the area $x^2 - y^2 + 2z^2 = 1$ and z = y.

Choices:

- 1. $(\sin(t),\cos(t),\sin(t))$
- 2. $(\sin(t), \cos(t), \cos(t))$
- 3. $(2\cos(t), 2\sin(t), t)$
- 4. $(\cos(\pi t), \sin(\pi t), \sin(\pi t))$
- 5. $(\cos(\pi t), \sin(\pi t), \pi t)$

The arc-length of a curve

Let $\Delta t_i = t_i - t_{i-1}$. Let $\Delta \mathbf{r}_i = \mathbf{r}_i - \mathbf{r}_{i-1}$. Then the length of the curve \mathcal{C} is approximately

$$s_n = \sum_{i=1}^n \left| \Delta \mathbf{r}_i \right| = \sum_{i=1}^n \left| \frac{\Delta \mathbf{r}_i}{\Delta t_i} \right| \Delta t_i.$$

The arc-length of the curve the supremum of all such approximations.

If $\mathbf{r}(t),$ where $a\leq t\leq b,$ is a parametrization of a smooth curve, then the length of the curve equals

$$\int_{a}^{b} |\mathbf{r}'(t)| \, \mathrm{d}t$$

The special case $\mathbf{r}(t)=(t,f(t)),$ this is equivalent to

J

$$\int_{a}^{b} \sqrt{1 + \left|f'(t)\right|^2} \mathrm{d}t$$