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Please watch these videos before the lecture: 3

What we will talk about today

= 11.1: Vector Functions of One Variable

= 11.3: Curves and Parametrizations


https://www.youtube.com/watch?v=hKrKBpHul_A&

11.1 Vector function of one variable



Example — vector-valued functions of a single real variable

The butterfly curve is defined by the function ¢ - (z,y) where

x = sin(t) (e“"sE‘) — 2cos(4t) — sin® (:—2))

t
y = cos(t) (e“‘“‘(t) — 2cos(4t) — sin® (E))




Vector-valued function of one variable

We consider functions r : D — R™, where D is an interval.

We write the components of r(t) as

r(t) = (z(t),...,z,(t)).

Usually in 3-space, we write

Concepts: Limit values, continuity, derivatives, integration — The
same concepts from one-variable-calculus applied to each
component.



Limits of functions

From R to R

The notation lim,,_,.7(z) = L means that for all € > 0 there

exists 9 > 0 such that

|z —c|<d = |r(z)—L|<e
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Limits of functions

From R to R
The notation lim,,_,.7(z) = L means that for all € > 0 there
exists § > 0 such that

|z —c|<d0 = |r(z)—L|<e
From R to R"

The notation lim,_,, r(z) = L means that for all € > 0 there
exists 6 > 0 such that

|t —c| <0 = |r(x) —L|<e

Only difference: r(z) — L is now a vector.



Continuity

From R to R

The function r(z) is continuous at a point a € D means

ill}Illl r(z) =r(a).



Continuity

From R to R

The function r(z) is continuous at a point a € D means

910111(11 r(z) =r(a).

From R to R"

The function r(x) is continuous at a point a € D means

ilir(ll r(z) =r(a).

This is equivalent to that every component is continuous in one

variable sense.



Derivative

The derivative of a function from R to R"™ is defined by

() = iy SCER =)

if the limit exists. Note that the derivative is also a vector.

v(t)




Interpretations of such functions

A continuous function r from an interval in R to R™ can be seen as

a particle moves along the curve and r(t) indicates the particle’s
position at time t.

We can ask: What are the velocity and acceleration of the particle?



Interpretations of such functions

A continuous function r from an interval in R to R™ can be seen as
a particle moves along the curve and r(t) indicates the particle’s
position at time t.

We can ask: What are the velocity and acceleration of the particle?
Such a curve can also be seen as a geometric object.

We can ask: What is the tangent line of a curve at a certain
point? How long is the curve?



From the moving particle point of view, r’(a) is the velocity at the
time a and the second derivative r”(a) is the acceleration.



From the moving particle point of view, r’(a) is the velocity at the
time a and the second derivative r”(a) is the acceleration.

We often write r’ = v and r” = a. Note that both velocity and

acceleration are vectors.

The length of v, i.e., |v|, is called the speed and it is a number.

v(t)




Tangent line

The tangent line of a curve r(t) at point ¢, is given by

T(t) = r(ty) + v(to)(t —to)-
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Tangent line

The tangent line of a curve r(t) at point ¢, is given by

T(t) = r(ty) + v(to)(t —to)-

This only works if the curve is “smooth”, i.e., if the velocity

(derivative) exists and is not zero.
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A particle moves along a curve in the zy-plane such that the
position at the time ¢ seconds after the start is

r(t) = (2cosmt,3sinnt),t > 0.

Draw the path of the particle and determine the direction of the
tangent line at point r(2).

What is the name of this curve?
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Consider the function r(t) = (¢,t2,2). Show that the point

(—1,1,2) is on the curve and find the tangent line of the curve at
this point.
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Differentiation rules

@ (w0 +vi) =) + V)

(b) %(A(t)u(f)) = X (0)u(t) + A(0)w'(1)

© T ev)) = @) () +u(0) 0 V0)
@ 9 (a3 v0) = 0030 + () 3V
© L (@) = Vou (o).

Also, at any point where u(z) # 0,

u(z) e u'(r)

d
® 77Ol = )]
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Example: Product rules

EXAMPLE 7 Ifuis threq tllr}es differentiable, calculate and simplify the triple
product derivative

d d d?
Z(.1 . (T?XT;)).

Solution Using various versions of the Product Rule, we calculate

d du d?u
I(.1.(EXF))
2 2 2 3
=i—?o(%x%)+uo(%x%)+uo(i—?x%)
du d3u du d3u
) =ue( )

+0tue (X FTRTE
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Question you may get in the exam

Let 7(t) describe the position of a particle in the xy-plane where it
moves at a constant angular velocity w radians per second in a
circle with radius R around the origin.

= Write done the expression for r(t) if the particle is at the
point (R,0) at time ¢ = 0 seconds.
= Calculate the velocity r’(¢) and the acceleration r”(t) of the

particle.

= Draw a picture of the particle's trajectory and draw the
velocity vector and acceleration vector at a time of your
choice.
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11.3 Curves and parametrizations




Parametrizations

Parametrization of curves — Define a curve in R™ as function

r(t) = (z1(), ..., 2, (D).
Practice parametrizations of curves. It is important.

t

r(t) = (2cos(mt), sin(7t)) 16



One curve, many parametrizations

The same curve can have many parametrizations. For example,
r(t) = (t,2t), t € 0,1]

and

r(t) = (V100t,2v/100t), ¢ € [0,1/100]

give the same curve.
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Example: Intersection of two surfaces

Determine a parametrization for the curve given by the intersection
of the surface z = 22 + 9% — 1 and 2z = 2z.
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Quiz: Intersection of two surfaces

Determine a parametrization for the curve given by the intersection
of the area 22 —y? + 222 =1 and z = y.

Choices:

(sin(t), cos(t),sin(t))
sin(t), cos(t), cos(t))
2 cos(t),2sin(t),t)

[y

(
(
(
(

oA W

cos(7t), sin(7t), sin(7t))
(t)

cos(7t), sin(7t), t)
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The arc-length of a curve

Let At, =t,—1t,_;. Let Ar, =r, —r, ;. Then the length of the
curve C is approximately

=D lAn| =2 AZ

1=1 =1

At/L .

The arc-length of the curve the supremum of all such
approximations.
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The arc-length of a smooth curve

If r(t), where a <t < b, is a parametrization of a smooth curve,
then the length of the curve equals

/abr’(t)dt

The special case r(t) = (¢, f(t)), this is equivalent to

/b\/1+!f/(t)2dt
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