Lecture 02 - Vector Functions and Curves

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019
Department of Mathematics, Uppsala University, Sweden

Summary

Please watch these videos before the lecture: 3
What we will talk about today

- 11.1: Vector Functions of One Variable
- 11.3: Curves and Parametrizations

11.1 Vector function of one variable

Example - vector-valued functions of a single real variable

The butterfly curve is defined by the function $t \mapsto(x, y)$ where

$$
\begin{aligned}
& x=\sin (t)\left(e^{\cos (t)}-2 \cos (4 t)-\sin ^{5}\left(\frac{t}{12}\right)\right) \\
& y=\cos (t)\left(e^{\cos (t)}-2 \cos (4 t)-\sin ^{5}\left(\frac{t}{12}\right)\right)
\end{aligned}
$$

Vector-valued function of one variable

We consider functions $\mathbf{r}: D \mapsto \mathbb{R}^{n}$, where D is an interval.
We write the components of $\mathbf{r}(t)$ as

$$
\mathbf{r}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right) .
$$

Usually in 3-space, we write

$$
\mathbf{r}(t)=(x(t), y(t), z(t))
$$

Concepts: Limit values, continuity, derivatives, integration - The same concepts from one-variable-calculus applied to each component.

Limits of functions

From \mathbb{R} to \mathbb{R}

The notation $\lim _{x \rightarrow c} r(x)=L$ means that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
|x-c|<\delta \Longrightarrow|r(x)-L|<\varepsilon
$$

Limits of functions

From \mathbb{R} to \mathbb{R}

The notation $\lim _{x \rightarrow c} r(x)=L$ means that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
|x-c|<\delta \Longrightarrow|r(x)-L|<\varepsilon
$$

From \mathbb{R} to \mathbb{R}^{n}

The notation $\lim _{x \rightarrow c} \mathbf{r}(x)=\mathbf{L}$ means that for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
|x-c|<\delta \Longrightarrow|\mathbf{r}(x)-\mathbf{L}|<\varepsilon
$$

Only difference: $\mathbf{r}(x)-\mathbf{L}$ is now a vector.

Continuity

From \mathbb{R} to \mathbb{R}

The function $r(x)$ is continuous at a point $a \in D$ means

$$
\lim _{x \rightarrow a} r(x)=r(a) .
$$

Continuity

From \mathbb{R} to \mathbb{R}

The function $r(x)$ is continuous at a point $a \in D$ means

$$
\lim _{x \rightarrow a} r(x)=r(a)
$$

From \mathbb{R} to \mathbb{R}^{n}
The function $\mathbf{r}(x)$ is continuous at a point $a \in D$ means

$$
\lim _{x \rightarrow a} \mathbf{r}(x)=\mathbf{r}(a)
$$

This is equivalent to that every component is continuous in one variable sense.

Derivative

The derivative of a function from \mathbb{R} to \mathbb{R}^{n} is defined by

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

if the limit exists. Note that the derivative is also a vector.

Interpretations of such functions

A continuous function \mathbf{r} from an interval in \mathbb{R} to \mathbb{R}^{n} can be seen as a particle moves along the curve and $\mathbf{r}(t)$ indicates the particle's position at time t.

We can ask: What are the velocity and acceleration of the particle?

Interpretations of such functions

A continuous function \mathbf{r} from an interval in \mathbb{R} to \mathbb{R}^{n} can be seen as a particle moves along the curve and $\mathbf{r}(t)$ indicates the particle's position at time t.

We can ask: What are the velocity and acceleration of the particle?
Such a curve can also be seen as a geometric object.
We can ask: What is the tangent line of a curve at a certain point? How long is the curve?

Velocity

From the moving particle point of view, $\mathbf{r}^{\prime}(a)$ is the velocity at the time a and the second derivative $\mathbf{r}^{\prime \prime}(a)$ is the acceleration.

Velocity

From the moving particle point of view, $\mathbf{r}^{\prime}(a)$ is the velocity at the time a and the second derivative $\mathbf{r}^{\prime \prime}(a)$ is the acceleration.

We often write $\mathbf{r}^{\prime}=\mathbf{v}$ and $\mathbf{r}^{\prime \prime}=\mathbf{a}$. Note that both velocity and acceleration are vectors.

The length of \mathbf{v}, i.e., $|\mathbf{v}|$, is called the speed and it is a number.

Tangent line

The tangent line of a curve $\mathbf{r}(t)$ at point t_{0} is given by

$$
\mathbf{T}(t)=\mathbf{r}\left(t_{0}\right)+\mathbf{v}\left(t_{0}\right)\left(t-t_{0}\right)
$$

Tangent line

The tangent line of a curve $\mathbf{r}(t)$ at point t_{0} is given by

$$
\mathbf{T}(t)=\mathbf{r}\left(t_{0}\right)+\mathbf{v}\left(t_{0}\right)\left(t-t_{0}\right)
$$

(2) This only works if the curve is "smooth", i.e., if the velocity (derivative) exists and is not zero.

Example

A particle moves along a curve in the $x y$-plane such that the position at the time t seconds after the start is

$$
\mathbf{r}(t)=(2 \cos \pi t, 3 \sin \pi t), t \geq 0
$$

Draw the path of the particle and determine the direction of the tangent line at point $\mathbf{r}(2)$.

What is the name of this curve?

Quiz

Consider the function $\mathbf{r}(t)=\left(t, t^{2}, 2\right)$. Show that the point $(-1,1,2)$ is on the curve and find the tangent line of the curve at this point.

Differentiation rules

(a) $\frac{d}{d t}(\mathbf{u}(t)+\mathbf{v}(t))=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
(b)

$$
\frac{d}{d t}(\lambda(t) \mathbf{u}(t))=\lambda^{\prime}(t) \mathbf{u}(t)+\lambda(t) \mathbf{u}^{\prime}(t)
$$

(c)

$$
\frac{d}{d t}(\mathbf{u}(t) \bullet \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \bullet \mathbf{v}(t)+\mathbf{u}(t) \bullet \mathbf{v}^{\prime}(t)
$$

(d) $\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$
(e) $\frac{d}{d t}(\mathbf{u}(\lambda(t)))=\lambda^{\prime}(t) \mathbf{u}^{\prime}(\lambda(t))$.

Also, at any point where $\mathbf{u}(t) \neq \mathbf{0}$,
(f)

$$
\frac{d}{d t}|\mathbf{u}(t)|=\frac{\mathbf{u}(t) \bullet \mathbf{u}^{\prime}(t)}{|\mathbf{u}(t)|}
$$

Example: Product rules

EXAMPLE 7 If \mathbf{u} is three times differentiable, calculate and simplify the triple product derivative

$$
\frac{d}{d t}\left(\mathbf{u} \bullet\left(\frac{d \mathbf{u}}{d t} \times \frac{d^{2} \mathbf{u}}{d t^{2}}\right)\right)
$$

Solution Using various versions of the Product Rule, we calculate

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{u} \bullet & \left.\left(\frac{d \mathbf{u}}{d t} \times \frac{d^{2} \mathbf{u}}{d t^{2}}\right)\right) \\
& =\frac{d \mathbf{u}}{d t} \bullet\left(\frac{d \mathbf{u}}{d t} \times \frac{d^{2} \mathbf{u}}{d t^{2}}\right)+\mathbf{u} \bullet\left(\frac{d^{2} \mathbf{u}}{d t^{2}} \times \frac{d^{2} \mathbf{u}}{d t^{2}}\right)+\mathbf{u} \bullet\left(\frac{d \mathbf{u}}{d t} \times \frac{d^{3} \mathbf{u}}{d t^{3}}\right) \\
& =0+0+\mathbf{u} \bullet\left(\frac{d \mathbf{u}}{d t} \times \frac{d^{3} \mathbf{u}}{d t^{3}}\right)=\mathbf{u} \bullet\left(\frac{d \mathbf{u}}{d t} \times \frac{d^{3} \mathbf{u}}{d t^{3}}\right)
\end{aligned}
$$

Question you may get in the exam

Let $r(t)$ describe the position of a particle in the $x y$-plane where it moves at a constant angular velocity ω radians per second in a circle with radius R around the origin.

- Write done the expression for $\mathbf{r}(t)$ if the particle is at the point $(R, 0)$ at time $t=0$ seconds.
- Calculate the velocity $\mathbf{r}^{\prime}(t)$ and the acceleration $\mathbf{r}^{\prime \prime}(t)$ of the particle.
- Draw a picture of the particle's trajectory and draw the velocity vector and acceleration vector at a time of your choice.

11.3 Curves and parametrizations

Parametrizations

Parametrization of curves - Define a curve in \mathbb{R}^{n} as function

$$
\mathbf{r}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)
$$

Practice parametrizations of curves. It is important. (2)

$$
r(t)=(2 \cos (\pi t), \sin (\pi t))
$$

One curve, many parametrizations

The same curve can have many parametrizations. For example,

$$
\mathbf{r}(t)=(t, 2 t), \quad t \in[0,1]
$$

and

$$
\mathbf{r}(t)=(\sqrt{100 t}, 2 \sqrt{100 t}), \quad t \in[0,1 / 100]
$$

give the same curve.

Example: Intersection of two surfaces

Determine a parametrization for the curve given by the intersection of the surface $z=x^{2}+y^{2}-1$ and $z=2 x$.

Quiz: Intersection of two surfaces

Determine a parametrization for the curve given by the intersection of the area $x^{2}-y^{2}+2 z^{2}=1$ and $z=y$.

Choices:

1. $(\sin (t), \cos (t), \sin (t))$
2. $(\sin (t), \cos (t), \cos (t))$
3. $(2 \cos (t), 2 \sin (t), t)$
4. $(\cos (\pi t), \sin (\pi t), \sin (\pi t))$
5. $(\cos (\pi t), \sin (\pi t), \pi t)$

The arc-length of a curve

Let $\Delta t_{i}=t_{i}-t_{i-1}$. Let $\Delta \mathbf{r}_{i}=\mathbf{r}_{i}-\mathbf{r}_{i-1}$. Then the length of the curve \mathcal{C} is approximately

$$
s_{n}=\sum_{i=1}^{n}\left|\Delta \mathbf{r}_{i}\right|=\sum_{i=1}^{n}\left|\frac{\Delta \mathbf{r}_{i}}{\Delta t_{i}}\right| \Delta t_{i}
$$

The arc-length of the curve the supremum of all such approximations.

The arc-length of a smooth curve

If $\mathbf{r}(t)$, where $a \leq t \leq b$, is a parametrization of a smooth curve, then the length of the curve equals

$$
\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t
$$

The special case $\mathbf{r}(t)=(t, f(t))$, this is equivalent to

$$
\int_{a}^{b} \sqrt{1+\left|f^{\prime}(t)\right|^{2}} \mathrm{~d} t
$$

