Lecture 03 - Function of several variables

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Summary

Please watch this video before the lecture: 4
Today we will talk about

- 11.3: Curves and Parametrizations
- 12.1: Functions of Several Variables

11.3 Curves and parametrizations

Review: Arc-length

If $\mathbf{r}(t)$, where $a \leq t \leq b$, is a parametrization of a smooth curve, then the length of the curve equals

$$
\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t
$$

Example

Find the arc-length of the curve $\mathbf{r}(t)=(\cos t, \sin t)$ for $t \in[0, \pi]$.

Arc-length parametrization

Given a curve \mathcal{C}, a natural choice of parametrization $\mathbf{r}(s)$ is to make s representing the arc-length from an initial point P_{0} on the curve. This is called the arc-length parametrization.

Example

Find the arc-length parametrization of $\mathbf{r}(t)=(t, t)$.

Find the arc-length parametrization

Given any parametrization $\mathbf{r}(t)$, we can try find $t(s)$, the inverse of

$$
s(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau
$$

Then $\mathbf{r}(t(s))$ gives the arc-length parametrization with s being the arc-length from t_{0}.

Example

Calculate the length of the curve

$$
\mathbf{r}(t)=(3 t, 4 t), \quad 0 \leq t \leq 2
$$

Also determine an arc length parametrization of the curve.

Exam level question

Calculate the length of the spiral curve

$$
\mathbf{r}(t)=(\cos t, \sin t, t), \quad 0 \leq t \leq 2 \pi .
$$

Also determine an arc length parametrization of the curve.

12.1 Functions of Several Variables

Functions from \mathbb{R}^{n} to \mathbb{R}

A function f of n real variables is a rule that assigns a unique real number $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to each point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in some subset $\mathscr{D}(f)$ of \mathbb{R}^{n}. $\mathscr{D}(f)$ is called the domain of f. The set of real numbers $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ obtained from points in the domain is called the range of f.
As for functions of one variable, the domain convention specifies that the domain of a function of n variables is the largest set of points ($x_{1}, x_{2}, \ldots, x_{n}$) for which $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ makes sense as a real number, unless that domain is explicitly stated to be a smaller set.

Example: Temperature

The temperature T in Sweden varies with time and location.
It is a function of three variables, longitude λ, latitude φ and time t :

$$
T=T(\lambda, \varphi, t)
$$

Example: Waste paper bin

Example: Waste paper bin

The area of the bounding surface of a paper basket without a lid depends on the height h and the radius r according to the formula

$$
A=\pi r^{2}+2 \pi r h
$$

where $r>0$ and $h>0$.

Example: Waste paper bin

The area of the bounding surface of a paper basket without a lid depends on the height h and the radius r according to the formula

$$
A=\pi r^{2}+2 \pi r h
$$

where $r>0$ and $h>0$.
The area is thus described by the function

$$
A(r, h)=\pi r^{2}+2 \pi r h
$$

The set $\{(r, h): r>0, h>0\}$ is called the domain of the function.
The range of the function consists of all positive real numbers.

The graph of a function

The graph of a real-valued function f of one variable is the set of points in the $x y$-plane having coordinates $(x, f(x))$, i.e., a curve.

The graph of a function

The graph of a real-valued function f of two variable is the set of points in the 3 -space having coordinates $(x, y, f(x))$, i.e., a surface.

$f(x, y)=x^{2}+y^{2}$

$f(x, y)=x^{2}-y^{2}$

The graph of a function

The graph of a real-valued function f of two variable is the set of points in the 3 -space having coordinates $(x, y, f(x))$, i.e., a surface.

$f(x, y)=x^{2}-y^{2}$

Similarly, a graph of a real-valued function of n variables is an n-dimensional surface in \mathbb{R}^{n+1}. (2) We cannot draw graphs for $n \geq 3$ though!

Level curves

A level curve for a real-value function f of 2 variables consists of all points (x, y) in the domain of f that satisfy a equation $f(x, y)=C$ for some fixed number C.

$f=x^{2}+y^{2}$

Level curves of f

A topographic map

Example

Level surfaces

We can also think of a level surfaces of a function of three variables: points (x, y, z) such that $f(x, y, z)=C$ for some fixed number C.

Level surfaces of $f(x, y, z)=x^{2}-z$

Quiz

Let $f(x, y)=x^{2} y$. Which of the two picture is the correct level curves $f(x, y)=1$ and $f(x, y)=-1$?

Representations of the same curve

Note The same curve in \mathbb{R}^{2} can be described in several different ways, e.g., level curve, function curve, parameter curve.

Example: The parabola $y=x^{2}$ can be viewed as

- A level curve for the function $f(x, y)=x^{2}-y$.
- The graph of the function $g(x)=x^{2}$.
- The parametrized curve $\left(t, t^{2}\right)$ or $\left(t^{3}, t^{6}\right), t \in \mathbb{R}$.

Representations of the same surface

What about \mathbb{R}^{3} ?
Example: The paraboloid $z=x^{2}+y^{2}$ can be viewed as

- A surface area for the function $f(x, y, z)=x^{2}+y^{2}-z$.
- The graph of the function $z=r^{2}$ in cylindrical coordinates.
- The parametrized surface $\left(100 t, 2 s,(100 t)^{2}+4 s^{2}\right), s, t \in \mathbb{R}$.

