Lecture 06 - 12.6 Linear Approximations, Differentiability, and Differentials

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Summary

Please watch this video before the lecture: 6
Today we will talk about

- 12.6 Linear Approximations, Differentiability, and Differentials

Linearisation

Linearisation for functions from \mathbb{R} to \mathbb{R}

The tangent line of the graph $f(x)$ at $x=a$ gives an approximation of $f(x)$ for x near a, i.e.,

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

The function $L(x)$ is called the linearisation of f at a.

Linearisation for functions from \mathbb{R} to \mathbb{R}

The tangent line of the graph $f(x)$ at $x=a$ gives an approximation of $f(x)$ for x near a, i.e.,

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

The function $L(x)$ is called the linearisation of f at a.

Linearisation for functions from \mathbb{R}^{2} to \mathbb{R}

The tangent plane of the graph $f(x, y)$ at (a, b) also gives an approximation of $f(x, y)$ for x near a, i.e.,

$$
f(x, y) \approx L(x, y)=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-a)
$$

The function $L(x, y)$ is called the linearisation of f at (a, b).

Example - Linearisation

Find the linearisation of

$$
f(x, y)=\frac{x^{2} y}{y-1}+1
$$

at 1,2 and use it to approximate the function value $f(1.2,2.3)$

Example - Linearisation

Find the linearisation of

$$
f(x, y)=\frac{x^{2} y}{y-1}+1
$$

at 1,2 and use it to approximate the function value $f(1.2,2.3)$
The partial derivatives are

$$
\frac{\partial f}{\partial x}=\frac{2 x y}{y-1}, \quad \frac{\partial f}{\partial y}=\frac{x^{2}}{y-1}-\frac{x^{2} y}{(y-1)^{2}}
$$

Example - Linearisation

Find the linearisation of

$$
f(x, y)=\frac{x^{2} y}{y-1}+1
$$

at 1,2 and use it to approximate the function value $f(1.2,2.3)$
The partial derivatives are

$$
\frac{\partial f}{\partial x}=\frac{2 x y}{y-1}, \quad \frac{\partial f}{\partial y}=\frac{x^{2}}{y-1}-\frac{x^{2} y}{(y-1)^{2}}
$$

So the linearisation is
$L(x, y)=f(1,2)+\frac{\partial f}{\partial x}(1,2)(x-1)+\frac{\partial f}{\partial y}(1,2)(y-2)=1+4 x-y$.
The approximation $L(1.2,2.3)=3.5$, while $f(1.2,2.3)=3.548$.

Example - Linearisation

Find the linearisation of

$$
f(x, y)=\sqrt{2 x^{2}+e^{2 y}}
$$

at $(2,0)$ and use it to approximate the function value $f(2.2,-0.2)$

Example - Linearisation

Find the linearisation of

$$
f(x, y)=\sqrt{2 x^{2}+e^{2 y}}
$$

at $(2,0)$ and use it to approximate the function value $f(2.2,-0.2)$
The partial derivatives are

$$
\frac{\partial f}{\partial x}=\frac{2 x}{\sqrt{2 x^{2}+e^{2 y}}}, \quad \frac{\partial f}{\partial y}=\frac{e^{2 y}}{\sqrt{2 x^{2}+e^{2 y}}} .
$$

Example - Linearisation

Find the linearisation of

$$
f(x, y)=\sqrt{2 x^{2}+e^{2 y}}
$$

at $(2,0)$ and use it to approximate the function value $f(2.2,-0.2)$
The partial derivatives are

$$
\frac{\partial f}{\partial x}=\frac{2 x}{\sqrt{2 x^{2}+e^{2 y}}}, \quad \frac{\partial f}{\partial y}=\frac{e^{2 y}}{\sqrt{2 x^{2}+e^{2 y}}} .
$$

So the linearisation is

$$
L(x, y)=f(1,2)+\frac{\partial f}{\partial x}(1,2)(x-2)+\frac{\partial f}{\partial y}(1,2)(y-0)=\frac{4 x}{3}+\frac{y}{3}+\frac{1}{3} .
$$

The approximation $L(2.2,-0.2)=3.2$, while $f(2.2,-0.2)=3.217$.

Quiz: Linearisation

Which of the following is $L(x, y)$, the linearisation of $f(x, y)=e^{x^{2} y-1}$ at $(-1,1) ?$ (Hint)

1. $-2-2 x+y$
2. $-2-2 x+2 y$
3. $-3-x+2 y$
4. $-3-2 x+2 y$

What is $L(-0.9,1.1)$?

1. 0.8
2. 0.9
3. 1.0
4. 1.1

Differentiability

Good approximation for $f: \mathbb{R} \rightarrow \mathbb{R}$

If $f^{\prime}(a)$ exists, then

- $f(x)$ is continuous at $x=a$,
- The approximation

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a),
$$

is "good", ie.,

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-L(a+h)}{h}=0
$$

Good approximation for $f: \mathbb{R}^{2} \rightarrow \mathbb{R} ?$?

Question: Is it also true that if the partial derivatives

$$
\frac{\partial f}{\partial x}(a, b), \quad \frac{\partial f}{\partial y}(a, b),
$$

exist, then

- $f(x, y)$ is continuous at (a, b),
- The approximation

$$
f(x, y) \approx L(x, y)=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-a)
$$

is "good".

Good approximation for $f: \mathbb{R}^{2} \rightarrow \mathbb{R} ?$?

Question: Is it also true that if the partial derivatives

$$
\frac{\partial f}{\partial x}(a, b), \quad \frac{\partial f}{\partial y}(a, b),
$$

exist, then

- $f(x, y)$ is continuous at (a, b),
- The approximation

$$
f(x, y) \approx L(x, y)=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-a)
$$

is "good".
Answer: NO ©

What does "good" mean?

A function $f(x, y)$ is differentiable at (a, b) if

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(a+h, b+k)-L(a+h, b+k)}{\sqrt{h^{2}+k^{2}}}=0
$$

where

$$
L(x, y)=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-a)
$$

In other words, a function is differentiable when its linearisation is a good approximation.

Properties of differentiable functions

If $f(x, y)$ is differentiable at (a, b) then

- $f(x, y)$ is continuous at (a, b)
- Partial derivatives $\frac{\partial f}{\partial x}(a, b)$ and $\frac{\partial f}{\partial y}(a, b)$ must exist.

The inverse is not true!

Properties of differentiable functions

If $f(x, y)$ is differentiable at (a, b) then

- $f(x, y)$ is continuous at (a, b)
- Partial derivatives $\frac{\partial f}{\partial x}(a, b)$ and $\frac{\partial f}{\partial y}(a, b)$ must exist.

The inverse is not true!
But if partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous in a neighbourhood of (a, b), then f is differentiable at (a, b). (See Chapter 12.6 Theorem 3 and 4)

Example: Partial derivatives does not imply continuity

There are functions with partial derivatives but are not continuous. Consider
$f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{4}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0) .\end{cases}$
We have

$$
\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0 .
$$

But the function is not
 continuous at $(0,0)$! ©

Example: continuous but not differentiable

The function

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is continuous.

Example: continuous but not differentiable

The function

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is continuous.
But its partial derivatives

$$
f_{1}(0,0)=0, \quad f_{2}(0,0)=0 .
$$

Thus it's linearisation is

$$
L(x, y)=f(0,0)+0(x-0)+0(y-0)=f(0,0)=0 .
$$

Using polar coordinates, we have

$$
\frac{|f(x, y)-L(x, y)|}{\sqrt{x^{2}+y^{2}}}=\cos (\theta)^{2} \sin (\theta)
$$

Thus the function is not differentiable.

Proof: Differentiability implies continuity

A function $f(x, y)$ is differentiable at (a, b) if

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(a+h, b+k)-\left(f(a, b)+f_{1}(a, b) h+f_{2}(a, b) k\right)}{\sqrt{h^{2}+k^{2}}}=0,
$$

Proof: Differentiability implies continuity

A function $f(x, y)$ is differentiable at (a, b) if

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(a+h, b+k)-\left(f(a, b)+f_{1}(a, b) h+f_{2}(a, b) k\right)}{\sqrt{h^{2}+k^{2}}}=0
$$

which implies

$$
\lim _{(h, k) \rightarrow(0,0)} f(a+h, b+k)-\left(f(a, b)+f_{1}(a, b) h+f_{2}(a, b) k\right)=0 .
$$

Proof: Differentiability implies continuity

A function $f(x, y)$ is differentiable at (a, b) if

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(a+h, b+k)-\left(f(a, b)+f_{1}(a, b) h+f_{2}(a, b) k\right)}{\sqrt{h^{2}+k^{2}}}=0
$$

which implies

$$
\lim _{(h, k) \rightarrow(0,0)} f(a+h, b+k)-\left(f(a, b)+f_{1}(a, b) h+f_{2}(a, b) k\right)=0 .
$$

Therefore

$$
\lim _{(h, k) \rightarrow(0,0)} f(a+h, b+k)-f(a, b)=0 .
$$

Thus $f(a, b)$ is continuous at (a, b).

Functions from \mathbb{R}^{n} to \mathbb{R}^{m}

The Jacobian matrix

For vector-valued function of multi-variables

$$
\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right),
$$

the matrix $m \times n$ matrix

$$
\mathbf{f}^{\prime}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

is called the Jacobian matrix of \mathbf{f}.

The Jacobian matrix

For vector-valued function of multi-variables

$$
\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right),
$$

the matrix $m \times n$ matrix

$$
\mathbf{f}^{\prime}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

is called the Jacobian matrix of \mathbf{f}.
For the function $f(x, y)$ from \mathbb{R}^{2} to \mathbb{R}, this is

$$
f^{\prime}(x, y)=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]=\left[\begin{array}{ll}
f_{1}(x, y) & f_{2}(x, y)
\end{array}\right]
$$

Linearisation

The Linearisation for $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ is defined by

$$
\mathbf{L}(\mathbf{x})=\mathbf{f}(\mathbf{a})+\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{x}-\mathbf{a})
$$

For the function $f(x, y)$, this is

$$
\begin{aligned}
L(x, y) & =f(a, b)+\left[\begin{array}{ll}
f_{1}(x, y) & f_{2}(x, y)
\end{array}\right]\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]-\left[\begin{array}{l}
a \\
b
\end{array}\right]\right) \\
& =f(a, b)+\left[\begin{array}{ll}
f_{1}(x, y) & f_{2}(x, y)
\end{array}\right]\left[\begin{array}{l}
x-a \\
y-b
\end{array}\right] \\
& =f(a, b)+f_{1}(a, b)(x-a)+f_{2}(a, b)(y-b) .
\end{aligned}
$$

Differentiability

The function $\mathbf{f}(\mathbf{x})$ is differentiable at a point \mathbf{a}, if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\left|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{x}-\mathbf{a})\right|}{|\mathbf{x}-\mathbf{a}|}
$$

i.e., \mathbf{f} is well approximated by its linearisation

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{L}(\mathbf{x})=\mathbf{f}(\mathbf{a})+\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{x}-\mathbf{a}) .
$$

A sufficient condition for $\mathbf{f}(\mathbf{x})$ to be differential is all the partial derivatives in $\mathbf{f}^{\prime}(\mathbf{x})$ are continuous.

Example - Jacobian matrices

Compute the Jacobian matrices and linearisation at of

- $\mathbf{f}(x)=\left(x^{2}, 3 x^{2}, x\right)$ at a.
- $f(x, y, z)=\left(x^{2}+z-y^{3}\right)$ at (a, b, c).
- $\mathbf{f}(x, y)=\left(x^{2}-y, y^{2}+\cos (x)\right)$ at (a, b).

Quiz: Linearisation

Compute the Jacobian matrices and linearisations of

$$
\mathbf{f}(x, y)=\left(x^{2} \ln (y), x y\right)
$$

at $(2,1)$

1. $(-4+2 x+4 y,-1+x+2 y)$
2. $(-4+x+3 y,-2+x+y)$
3. $(-4+4 y,-2+x+2 y)$
4. $(-4+3 y,-2+2 y)$
