Lecture 08 - 12.7 Gradients and Directional Derivatives

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Summary

Please watch this video before the lecture: 8
Today we will talk about

- 12.7 Gradients and Directional Derivatives

Another hiking question

- You are climbing a mountain.
- The function $f(x, y)$ gives the altitude of position (x, y).
- Your current position is (a, b).
- Which direction should you go to increase your altitude as fast/slow as possible?

The directional derivative

The directional derivative

Let \mathbf{u} be a n-dimension unit vector.
Let $h(t)=f(\mathbf{a}+t \mathbf{u})$.
The directional derivative of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point a is defined by

$$
D_{\mathbf{u}} f(\mathbf{a})=h^{\prime}(0)
$$

Interpretation: $D_{\mathbf{u}} f(\mathbf{a})$ indicates the speed of change of f at the point \mathbf{a} in the direction of \mathbf{u}.

Partial derivatives are also directional derivatives

The partial derivative $\frac{\partial f}{\partial x}=D_{\mathbf{u}} f$ for $\mathbf{u}=(1,0)$, i.e., when \mathbf{u} is the unit vector along the direction of x axis.

Partial derivatives are also directional derivatives

The partial derivative $\frac{\partial f}{\partial y}=D_{\mathbf{u}} f$ for $\mathbf{u}=(0,1)$, i.e., when \mathbf{u} is the unit vector along the direction of y axis.

Example

Compute the directional derivative of f at $\mathbf{a}=(2,1)$ on the direction $\mathbf{u}=(\cos (\pi / 4), \sin (\pi / 4))$ if $f(x, y)=x^{2}+y^{2}$.

Example - Interpretation

- The point a and the vector \mathbf{u} decide the blue plane.
- The function $h(t)=f(\mathbf{a}+t \mathbf{u})$ gives the green curve.
- The yellow line is the tangent line of $h(t)$ at $t=0$.
- The result $D_{\mathbf{u}} f(\mathbf{a})=h^{\prime}(0)=3 \sqrt{2}$ is the slope of the yellow line.

Example - Interpretation

- The point a and the vector \mathbf{u} decide the blue plane.
- The function $h(t)=f(\mathbf{a}+t \mathbf{u})$ gives the green curve.
- The yellow line is the tangent line of $h(t)$ at $t=0$.
- The result $D_{\mathbf{u}} f(\mathbf{a})=h^{\prime}(0)=3 \sqrt{2}$ is the slope of the yellow line.

The gradient of a function from \mathbb{R}^{2} to \mathbb{R}

The gradient of a function $f(x, y)$ is the vector

$$
\nabla f(x, y)=\operatorname{grad} f(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) .
$$

Example

Compute $\nabla f(x, y)$ and $\nabla f(1,2)$ for $f(x, y)=x^{2} y$.

The gradient of a function from \mathbb{R}^{n} to \mathbb{R}

The gradient of a function $f\left(x_{1}, \ldots, x_{n}\right)$ is the vector

$$
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) .
$$

Example

Compute $\nabla f(x, y, z)$ and $\nabla f(1,-1,2)$ for

$$
f(x, y, z)=x^{2} y+e^{y z+2}
$$

Gradients and directional derivatives

If $f\left(x_{1}, \ldots, x_{n}\right)$ is differentiable at $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ is a unit vector, then

$$
D_{\mathbf{u}} f(\mathbf{a})=\mathbf{u} \cdot \nabla f(\mathbf{a})
$$

To see this, let $\mathbf{x}(t)=\mathbf{a}+\mathbf{u} t$ and note that

$$
\begin{aligned}
D_{\mathbf{u}} f(\mathbf{a}) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{x}(t))\right|_{t=0}=f^{\prime}(\mathbf{x}(0)) \mathbf{x}^{\prime}(0) \\
& =\left(\begin{array}{llll}
f_{1}(\mathbf{a}) & f_{2}(\mathbf{a}) & \ldots & f_{n}(\mathbf{a})
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) \\
& =f_{1}(\mathbf{a}) u_{1}+f_{2}(\mathbf{a}) u_{2}+\cdots+f_{n}(\mathbf{a}) u_{n}=\mathbf{u} \cdot \nabla f(\mathbf{a})
\end{aligned}
$$

where we apply the chain rule for $f(\mathbf{x}(t))$.

Example

Use the formula

$$
D_{\mathbf{u}} f(\mathbf{a})=\mathbf{u} \cdot \nabla f(\mathbf{a}) .
$$

to compute the directional derivative of f at $(2,1)$ on the direction $(\mathbf{u}=\cos (\pi / 4), \sin (\pi / 4))$ for $f(x, y)=x^{2}+y^{2}$.

The result should be the same as before.

Quiz

Use the formula

$$
D_{\mathbf{u}} f(\mathbf{a})=\mathbf{u} \cdot \nabla f(\mathbf{a})
$$

to find the directional derivative for $f(x, y)=x^{2} y$ at the point
$(2,3)$ on the direction $\mathbf{u}=\left(\frac{3}{5}, \frac{4}{5}\right)$.
Which of the following is the correct answer?

1. $\frac{51}{5}$
2. $\frac{52}{5}$
3. $\frac{53}{5}$
4. $\frac{54}{5}$

Example

Calculate $D f_{\mathbf{u}}(\mathbf{a})$ at point $\mathbf{a}=(2,1)$ in the direction
$\mathbf{u}=(\cos \theta, \sin \theta))$ if $f(x, y)=x^{2}+y^{2}$.

The geometric properties of the gradient

Thus if f is differentiable at a point \mathbf{a}, then at the point \mathbf{a}

- If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through a.

The geometric properties of the gradient

Thus if f is differentiable at a point \mathbf{a}, then at the point \mathbf{a}

- If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through a.
- The directional derivatives along the level curves are zero.

The geometric properties of the gradient

Thus if f is differentiable at a point \mathbf{a}, then at the point \mathbf{a}

- If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through a.
- The directional derivatives along the level curves are zero.
- The function increase fastest along the direction $\nabla f(\mathbf{a})$.

The geometric properties of the gradient

Thus if f is differentiable at a point \mathbf{a}, then at the point \mathbf{a}

- If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through a.
- The directional derivatives along the level curves are zero.
- The function increase fastest along the direction $\nabla f(\mathbf{a})$.
- The function decreases fastest along the direction $-\nabla f(\mathbf{a})$.

The geometric properties of the gradient

Suppose the level curve has a parametrization $\mathbf{r}(t)=(x(t), y(t))$.
Then by the chain rule

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t)) & =f^{\prime}(\mathbf{r}(t)) \mathbf{r}^{\prime}(t)=\left(\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)} \\
& =f_{1} x^{\prime}(t)+f_{2} y^{\prime}(t) \\
& =\left(f_{1}, f_{2}\right) \cdot\left(x^{\prime}(t), y^{\prime}(t)\right) \\
& =\nabla f(x, y) \cdot\left(x^{\prime}(t), y^{\prime}(t)\right)
\end{aligned}
$$

Since the function does not change its value along a level curve, this derivative must be 0 .

The geometric properties of the gradient

Suppose the level curve has a parametrization $\mathbf{r}(t)=(x(t), y(t))$.
Then by the chain rule

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t)) & =f^{\prime}(\mathbf{r}(t)) \mathbf{r}^{\prime}(t)=\left(\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)} \\
& =f_{1} x^{\prime}(t)+f_{2} y^{\prime}(t) \\
& =\left(f_{1}, f_{2}\right) \cdot\left(x^{\prime}(t), y^{\prime}(t)\right) \\
& =\nabla f(x, y) \cdot\left(x^{\prime}(t), y^{\prime}(t)\right)
\end{aligned}
$$

Since the function does not change its value along a level curve, this derivative must be 0 .

So $\nabla f(x, y)$ and $\left(x^{\prime}(t), y^{\prime}(t)\right)$ must be orthogonal!

The geometric properties of the gradient

The directional derivative is given by

$$
D_{\mathbf{u}} f(\mathbf{a})=\mathbf{u} \cdot \nabla f(\mathbf{a})=|\mathbf{u}||\nabla f(\mathbf{a})| \cos \theta=|\nabla f(\mathbf{a})| \cos \theta
$$

where θ is the angel between \mathbf{u} and $\nabla f(\mathbf{a})$.

The geometric properties of the gradient

The directional derivative is given by

$$
D_{\mathbf{u}} f(\mathbf{a})=\mathbf{u} \cdot \nabla f(\mathbf{a})=|\mathbf{u}||\nabla f(\mathbf{a})| \cos \theta=|\nabla f(\mathbf{a})| \cos \theta
$$

where θ is the angel between \mathbf{u} and $\nabla f(\mathbf{a})$.
So this is maximized when $\theta=0$, i.e., when \mathbf{u} and $\nabla f(\mathbf{a})$ are of the same direction.

The geometric properties of the gradient

The directional derivative is given by

$$
D_{\mathbf{u}} f(\mathbf{a})=\mathbf{u} \cdot \nabla f(\mathbf{a})=|\mathbf{u}||\nabla f(\mathbf{a})| \cos \theta=|\nabla f(\mathbf{a})| \cos \theta
$$

where θ is the angel between \mathbf{u} and $\nabla f(\mathbf{a})$.
So this is maximized when $\theta=0$, i.e., when \mathbf{u} and $\nabla f(\mathbf{a})$ are of the same direction.

Also, this is minimized when $\theta=\pi$, i.e., when \mathbf{u} and $\nabla f(\mathbf{a})$ are of the opposite direction.

Two ways to view a graph

The graph of a function $f(x, y)$ of two variables can be seen as the level surface $g(x, y, z)=0$ of the 3 -variable function

$$
g(x, y, z)=f(x, y)-z
$$

Tangent plane and gradient

Note that $\nabla g(a, b, f(a, b))$ of $g(x, y, z)=f(x, y)-z$ is normal to the tangent plane at $(a, b, f(a, b))$.

So any point (x, y, z) on the tangent plane statisfies

$$
(x-a, y-b, z-f(a, b)) \cdot \nabla g(a, b, f(a, b))=0
$$

Tangent plane and gradient

The gradient of $g(x, y, z)=f(x, y)-z$ at a point $(a, b, f(a, b))$ is

$$
\nabla g(a, b, f(a, b))=\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)=\left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b),-1\right)
$$

Tangent plane and gradient

The gradient of $g(x, y, z)=f(x, y)-z$ at a point $(a, b, f(a, b))$ is

$$
\nabla g(a, b, f(a, b))=\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)=\left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b),-1\right)
$$

Thus the tangent plane of $f(x, y)$ at (a, b) is given by

$$
(x-a, y-b, z-f(a, b)) \cdot \nabla g(a, b, f(a, b))=0
$$

i.e.,

$$
\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)-(z-f(a, b))=0
$$

Tangent plane and gradient

The gradient of $g(x, y, z)=f(x, y)-z$ at a point $(a, b, f(a, b))$ is

$$
\nabla g(a, b, f(a, b))=\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)=\left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b),-1\right)
$$

Thus the tangent plane of $f(x, y)$ at (a, b) is given by

$$
(x-a, y-b, z-f(a, b)) \cdot \nabla g(a, b, f(a, b))=0
$$

i.e.,

$$
\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)-(z-f(a, b))=0
$$

Rearranging the terms gives

$$
z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
$$

Example

Find an equation for the tangent plane at the point $(1,-1,2)$ of the paraboloid given by the equation

$$
x^{2}+y^{2}-z=0
$$

