Lecture 08 – 12.7 Gradients and Directional Derivatives

Several Variable Calculus, 1MA017

Xing Shi Cai Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Summary

Please watch this video before the lecture: 8

Today we will talk about

• 12.7 Gradients and Directional Derivatives

Another hiking question

- You are climbing a mountain.
- The function f(x, y) gives the altitude of position (x, y).
- Your current position is (a,b).
- Which direction should you go to increase your altitude as fast/slow as possible?

The directional derivative

Let \mathbf{u} be a *n*-dimension unit vector.

Let $h(t) = f(\mathbf{a} + t\mathbf{u})$.

The directional derivative of $f : \mathbb{R}^n \to \mathbb{R}$ at a point \mathbf{a} is defined by

$$D_{\mathbf{u}}f(\mathbf{a}) = h'(0).$$

Interpretation: $D_{\mathbf{u}}f(\mathbf{a})$ indicates the speed of change of f at the point \mathbf{a} in the direction of \mathbf{u} .

Partial derivatives are also directional derivatives

The partial derivative $\frac{\partial f}{\partial x} = D_{\mathbf{u}} f$ for $\mathbf{u} = (1,0)$, i.e., when \mathbf{u} is the unit vector along the direction of x axis.

Partial derivatives are also directional derivatives

The partial derivative $\frac{\partial f}{\partial y} = D_{\mathbf{u}} f$ for $\mathbf{u} = (0, 1)$, i.e., when \mathbf{u} is the unit vector along the direction of y axis.

Example

Compute the directional derivative of f at $\mathbf{a} = (2,1)$ on the direction $\mathbf{u} = (\cos(\pi/4), \sin(\pi/4))$ if $f(x,y) = x^2 + y^2$.

Example – Interpretation

- The point ${\bf a}$ and the vector ${\bf u}$ decide the blue plane.
- The function $h(t) = f(\mathbf{a} + t\mathbf{u})$ gives the green curve.
- The yellow line is the tangent line of h(t) at t = 0.
- The result $D_{\mathbf{u}}f(\mathbf{a})=h'(0)=3\sqrt{2}$ is the slope of the yellow line.

8

Example – Interpretation

- The point ${\bf a}$ and the vector ${\bf u}$ decide the blue plane.
- The function $h(t) = f(\mathbf{a} + t\mathbf{u})$ gives the green curve.
- The yellow line is the tangent line of h(t) at t = 0.
- The result $D_{\mathbf{u}}f(\mathbf{a})=h'(0)=3\sqrt{2}$ is the slope of the yellow line.

The gradient of a function f(x, y) is the vector

$$\nabla f(x,y) = \mathbf{grad} f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right).$$

Example

Compute $\nabla f(x,y)$ and $\nabla f(1,2)$ for $f(x,y) = x^2 y$.

The gradient of a function $f(x_1,\ldots,x_n)$ is the vector

$$\nabla f(x_1,\ldots,x_n) = \left(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n}\right).$$

Example

Compute $\nabla f(x, y, z)$ and $\nabla f(1, -1, 2)$ for

$$f(x, y, z) = x^2 y + e^{yz+2}$$

Gradients and directional derivatives

If $f(x_1, \dots, x_n)$ is differentiable at $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{u} = (u_1, \dots, u_n)$ is a unit vector, then $D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a}).$

To see this, let $\mathbf{x}(t) = \mathbf{a} + \mathbf{u}t$ and note that

$$\begin{split} D_{\mathbf{u}}f(\mathbf{a}) &= \left. \frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x}(t)) \right|_{t=0} = f'(\mathbf{x}(0))\mathbf{x}'(0) \\ &= \left(f_1(\mathbf{a}) \quad f_2(\mathbf{a}) \quad \dots \quad f_n(\mathbf{a}) \right) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \\ &= f_1(\mathbf{a})u_1 + f_2(\mathbf{a})u_2 + \dots + f_n(\mathbf{a})u_n = \mathbf{u} \cdot \nabla f(\mathbf{a}), \end{split}$$

where we apply the chain rule for $f(\mathbf{x}(t))$.

Example

Use the formula

$$D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a}).$$

to compute the directional derivative of f at (2,1) on the direction $(\mathbf{u}=\cos(\pi/4),\sin(\pi/4))$ for $f(x,y)=x^2+y^2.$

The result should be the same as before.

12

Use the formula

$$D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a}).$$

to find the directional derivative for $f(x,y)=x^2y$ at the point (2,3) on the direction $\mathbf{u}=(\frac{3}{5},\frac{4}{5}).$

Which of the following is the correct answer?

1.
$$\frac{51}{5}$$

2. $\frac{52}{5}$
3. $\frac{53}{5}$

Example

 $\begin{aligned} & \text{Calculate } Df_{\mathbf{u}}(\mathbf{a}) \text{ at point } \mathbf{a}=(2,1) \text{ in the direction} \\ & \mathbf{u}=(\cos\theta,\sin\theta)) \text{ if } f(x,y)=x^2+y^2. \end{aligned}$

• If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through \mathbf{a} .

- If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through \mathbf{a} .
- The directional derivatives along the level curves are zero.

- If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through \mathbf{a} .
- The directional derivatives along the level curves are zero.
- The function increase fastest along the direction $\nabla f(\mathbf{a})$.

- If $\nabla f(\mathbf{a}) \neq 0$, then $\nabla f(\mathbf{a})$ is orthogonal to the level curve passing through \mathbf{a} .
- The directional derivatives along the level curves are zero.
- The function increase fastest along the direction $\nabla f(\mathbf{a})$.
- The function decreases fastest along the direction $-\nabla f(\mathbf{a}).$

Suppose the level curve has a parametrization $\mathbf{r}(t)=(x(t),y(t)).$ Then by the chain rule

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{r}(t)) &= f'(\mathbf{r}(t))\mathbf{r}'(t) = \begin{pmatrix} f_1 & f_2 \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} \\ &= f_1 x'(t) + f_2 y'(t) \\ &= (f_1, f_2) \cdot (x'(t), y'(t)) \\ &= \nabla f(x, y) \cdot (x'(t), y'(t)) \end{aligned}$$

Since the function does not change its value along a level curve, this derivative must be 0.

Suppose the level curve has a parametrization $\mathbf{r}(t)=(x(t),y(t)).$ Then by the chain rule

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{r}(t)) &= f'(\mathbf{r}(t))\mathbf{r}'(t) = \begin{pmatrix} f_1 & f_2 \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} \\ &= f_1 x'(t) + f_2 y'(t) \\ &= (f_1, f_2) \cdot (x'(t), y'(t)) \\ &= \nabla f(x, y) \cdot (x'(t), y'(t)) \end{aligned}$$

Since the function does not change its value along a level curve, this derivative must be 0.

So $\nabla f(x,y)$ and (x'(t),y'(t)) must be orthogonal!

The directional derivative is given by

$$D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a}) = |\mathbf{u}| |\nabla f(\mathbf{a})| \cos \theta = |\nabla f(\mathbf{a})| \cos \theta,$$

where θ is the angel between **u** and $\nabla f(\mathbf{a})$.

The directional derivative is given by

$$D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a}) = |\mathbf{u}| |\nabla f(\mathbf{a})| \cos \theta = |\nabla f(\mathbf{a})| \cos \theta,$$

where θ is the angel between \mathbf{u} and $\nabla f(\mathbf{a})$.

So this is maximized when $\theta=0,$ i.e., when ${\bf u}$ and $\nabla f({\bf a})$ are of the same direction.

The directional derivative is given by

$$D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a}) = |\mathbf{u}| |\nabla f(\mathbf{a})| \cos \theta = |\nabla f(\mathbf{a})| \cos \theta,$$

where θ is the angel between **u** and $\nabla f(\mathbf{a})$.

So this is maximized when $\theta=0,$ i.e., when ${\bf u}$ and $\nabla f({\bf a})$ are of the same direction.

Also, this is minimized when $\theta = \pi$, i.e., when **u** and $\nabla f(\mathbf{a})$ are of the opposite direction.

Two ways to view a graph

The graph of a function f(x,y) of two variables can be seen as the level surface g(x,y,z)=0 of the 3-variable function

g(x,y,z) = f(x,y) - z

Note that $\nabla g(a,b,f(a,b))$ of g(x,y,z)=f(x,y)-z is normal to the tangent plane at (a,b,f(a,b)).

So any point $\left(x,y,z\right)$ on the tangent plane statisfies

$$(x-a,y-b,z-f(a,b))\cdot \nabla g(a,b,f(a,b))=0$$

The gradient of
$$g(x, y, z) = f(x, y) - z$$
 at a point $(a, b, f(a, b))$ is

$$\nabla g(a, b, f(a, b)) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) = \left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b), -1\right)$$

The gradient of
$$g(x, y, z) = f(x, y) - z$$
 at a point $(a, b, f(a, b))$ is

$$\nabla g(a, b, f(a, b)) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) = \left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b), -1\right)$$

Thus the tangent plane of $f(\boldsymbol{x},\boldsymbol{y})$ at $(\boldsymbol{a},\boldsymbol{b})$ is given by

$$(x-a,y-b,z-f(a,b))\cdot\nabla g(a,b,f(a,b))=0$$

i.e.,

$$\frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b) - (z-f(a,b)) = 0.$$

The gradient of
$$g(x, y, z) = f(x, y) - z$$
 at a point $(a, b, f(a, b))$ is

$$\nabla g(a, b, f(a, b)) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) = \left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b), -1\right)$$

Thus the tangent plane of $f(\boldsymbol{x},\boldsymbol{y})$ at $(\boldsymbol{a},\boldsymbol{b})$ is given by

$$(x-a,y-b,z-f(a,b))\cdot\nabla g(a,b,f(a,b))=0$$

i.e.,

$$\frac{\partial f}{\partial x}(a,b)(x-a)+\frac{\partial f}{\partial y}(a,b)(y-b)-(z-f(a,b))=0.$$

Rearranging the terms gives

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

Example

Find an equation for the tangent plane at the point $\left(1,-1,2\right)$ of the paraboloid given by the equation

$$x^2 + y^2 - z = 0.$$

