Lecture 09 - 12.9 Taylor's Formula, Taylor Series, and Approximations

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Summary

Please watch this video before the lecture: 9
Today we will talk about

- 12.9 Taylor's Formula, Taylor Series, and Approximations

Brook Taylor

Brook Taylor (1685-1731). English mathematician.

Computing without a computer

You are asked to compute $f(1.02,1.97)$ for $f=\sqrt{x^{2}+y^{3}}$ without a computer. :

You can approximate it with the linearisation of $f(x, y)$, i.e.,

$$
\begin{aligned}
f(1.02,1.97) & \approx f(1,2)+\frac{\partial f}{\partial x}(1,2)(1.02-1)+\frac{\partial f}{\partial y}(1,2)(1.97-2) \\
& =2.94667
\end{aligned}
$$

Computing without a computer

You are asked to compute $f(1.02,1.97)$ for $f=\sqrt{x^{2}+y^{3}}$ without a computer. :

You can approximate it with the linearisation of $f(x, y)$, i.e.,

$$
\begin{aligned}
f(1.02,1.97) & \approx f(1,2)+\frac{\partial f}{\partial x}(1,2)(1.02-1)+\frac{\partial f}{\partial y}(1,2)(1.97-2) \\
& =2.94667
\end{aligned}
$$

Questions: How good is this approximation? If we want to be more precise, how can we do it?

Review: Taylor's formula for one-variable

Taylor's formula for one-variable

The Taylor polynomial of degree n for the function $f(x)$ at $x=a$ is

$$
p_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Taylor's formula for one-variable

The Taylor polynomial of degree n for the function $f(x)$ at $x=a$ is

$$
p_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

We have $p_{n}(x) \approx f(x)$ near a because

$$
r_{n}(x)=f(x)-p_{n}(x)=\frac{f^{(n+1)}(s)}{(n+1)!}(x-a)^{n+1}
$$

for some number s between a and x - Taylor's Theorem (Thm.
4.12).

Example $-\sqrt{x}$

For $f(x)=\sqrt{x}$, at the point $x=1$,

$$
\begin{aligned}
p_{1}(1.1) & =1.05000000000000 \\
p_{2}(1.1) & =1.04875000000000 \\
& \ldots \\
p_{9}(1.1) & =1.04880884817101 \\
f(1.1) & =1.04880884817015
\end{aligned}
$$

Example $-\sqrt{x}$

For $f(x)=\sqrt{x}$, at the point $x=1$,

Taylor's formula for several variables

A bit notations

Let $\mathbf{h}=\left(h_{1}, \ldots h_{n}\right)$. For a function $g\left(x_{1}, \ldots, x_{n}\right)$, we define

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla) g & =\mathbf{h} \cdot \nabla g=\left(h_{1}, \ldots, h_{n}\right) \cdot\left(\frac{\partial g}{\partial x_{1}}, \frac{\partial g}{\partial x_{2}}, \ldots \frac{\partial g}{\partial x_{n}}\right) \\
& =h_{1} \frac{\partial g}{\partial x_{1}}+h_{2} \frac{\partial g}{\partial x_{2}}+\cdots+h_{n} \frac{\partial g}{\partial x_{n}}
\end{aligned}
$$

A bit notations

Let $\mathbf{h}=\left(h_{1}, \ldots h_{n}\right)$. For a function $g\left(x_{1}, \ldots, x_{n}\right)$, we define

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla) g & =\mathbf{h} \cdot \nabla g=\left(h_{1}, \ldots, h_{n}\right) \cdot\left(\frac{\partial g}{\partial x_{1}}, \frac{\partial g}{\partial x_{2}}, \ldots \frac{\partial g}{\partial x_{n}}\right) \\
& =h_{1} \frac{\partial g}{\partial x_{1}}+h_{2} \frac{\partial g}{\partial x_{2}}+\cdots+h_{n} \frac{\partial g}{\partial x_{n}}
\end{aligned}
$$

For example, if $g(x, y)=x y$ and $\mathbf{h}=(2,1)$, then

$$
(\mathbf{h} \cdot \nabla) g=\mathbf{h} \cdot \nabla g=(2,1) \cdot(y, x)=2 y+x
$$

A bit notations

Let $\mathbf{h}=\left(h_{1}, \ldots h_{n}\right)$. For a function $g\left(x_{1}, \ldots, x_{n}\right)$, we define

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla) g & =\mathbf{h} \cdot \nabla g=\left(h_{1}, \ldots, h_{n}\right) \cdot\left(\frac{\partial g}{\partial x_{1}}, \frac{\partial g}{\partial x_{2}}, \ldots \frac{\partial g}{\partial x_{n}}\right) \\
& =h_{1} \frac{\partial g}{\partial x_{1}}+h_{2} \frac{\partial g}{\partial x_{2}}+\cdots+h_{n} \frac{\partial g}{\partial x_{n}}
\end{aligned}
$$

For example, if $g(x, y)=x y$ and $\mathbf{h}=(2,1)$, then

$$
(\mathbf{h} \cdot \nabla) g=\mathbf{h} \cdot \nabla g=(2,1) \cdot(y, x)=2 y+x
$$

Since $(\mathbf{h} \cdot \nabla) g$ is again a function of n variables, we can do this repeatedly

$$
\begin{aligned}
(h \cdot \nabla)^{2} g & =(h \cdot \nabla)(h \cdot \nabla) g \\
(h \cdot \nabla)^{3} g & =(h \cdot \nabla)(h \cdot \nabla)(h \cdot \nabla) g
\end{aligned}
$$

Taylor's formula for n variables

Given $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, let $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right)=\mathbf{x}-\mathbf{a}$ and

$$
F(t)=f(\mathbf{y}(t))=f(\mathbf{a}+t \mathbf{h}) .
$$

where
$\mathbf{y}(t)=\mathbf{a}+t \mathbf{h}=\left(a_{1}, \ldots, a_{n}\right)+t\left(h_{1}, \ldots, h_{n}\right)=\left(a_{1}+t h_{1}, \ldots, a_{n}+t h_{n}\right)$

Taylor's formula for n variables

Given $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, let $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right)=\mathbf{x}-\mathbf{a}$ and

$$
F(t)=f(\mathbf{y}(t))=f(\mathbf{a}+t \mathbf{h})
$$

where
$\mathbf{y}(t)=\mathbf{a}+t \mathbf{h}=\left(a_{1}, \ldots, a_{n}\right)+t\left(h_{1}, \ldots, h_{n}\right)=\left(a_{1}+t h_{1}, \ldots, a_{n}+t h_{n}\right)$
Then by the chain rule

$$
\begin{aligned}
F^{\prime}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{y}(t))=f^{\prime}(\mathbf{y}(t)) \mathbf{y}^{\prime}(t)=\left[\begin{array}{lll}
f_{1}(\mathbf{y}(t)) & \ldots & f_{n}(\mathbf{y}(t))
\end{array}\right]\left[\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right] \\
& =\mathbf{h} \cdot \nabla f(\mathbf{y}(t))=(\mathbf{h} \cdot \nabla) f(\mathbf{y}(t)) .
\end{aligned}
$$

Note $f_{i}=\frac{\partial f}{\partial x_{i}}$, the partial derivative of f with respect to x_{i}.

Taylor's formula for n variables

Let $g(\mathbf{x})=(\mathbf{h} \cdot \nabla) f(\mathbf{x})$. Taking derivative one more time, we get

$$
\begin{aligned}
F^{\prime \prime}(t)= & \frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{h} \cdot \nabla) f(\mathbf{y}(t))=\frac{\mathrm{d}}{\mathrm{~d} t} g(\mathbf{y}(t)) \\
& =(\mathbf{h} \cdot \nabla) g(\mathbf{y}(t))=(\mathbf{h} \cdot \nabla)^{2} f(\mathbf{y}(t))
\end{aligned}
$$

Taylor's formula for n variables

Let $g(\mathbf{x})=(\mathbf{h} \cdot \nabla) f(\mathbf{x})$. Taking derivative one more time, we get

$$
\begin{aligned}
F^{\prime \prime}(t)= & \frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{h} \cdot \nabla) f(\mathbf{y}(t))=\frac{\mathrm{d}}{\mathrm{~d} t} g(\mathbf{y}(t)) \\
& =(\mathbf{h} \cdot \nabla) g(\mathbf{y}(t))=(\mathbf{h} \cdot \nabla)^{2} f(\mathbf{y}(t))
\end{aligned}
$$

Taking derivative 3 times, we get

$$
F^{\prime \prime \prime}(t)=(\mathbf{h} \cdot \nabla)^{3} f(\mathbf{y}(t))
$$

Taylor's formula for n variables

Let $g(\mathbf{x})=(\mathbf{h} \cdot \nabla) f(\mathbf{x})$. Taking derivative one more time, we get

$$
\begin{aligned}
F^{\prime \prime}(t)= & \frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{h} \cdot \nabla) f(\mathbf{y}(t))=\frac{\mathrm{d}}{\mathrm{~d} t} g(\mathbf{y}(t)) \\
& =(\mathbf{h} \cdot \nabla) g(\mathbf{y}(t))=(\mathbf{h} \cdot \nabla)^{2} f(\mathbf{y}(t))
\end{aligned}
$$

Taking derivative 3 times, we get

$$
F^{\prime \prime \prime}(t)=(\mathbf{h} \cdot \nabla)^{3} f(\mathbf{y}(t))
$$

Taking derivative m times, we get

$$
F^{(m)}(t)=(\mathbf{h} \cdot \nabla)^{m} f(\mathbf{y}(t))=(\mathbf{h} \cdot \nabla)^{m} f(\mathbf{a}+t \mathbf{h})
$$

In particular

$$
F^{(m)}(0)=(\mathbf{h} \cdot \nabla)^{m} f(\mathbf{a})
$$

Taylor's formula for n variables

Applying Taylor's Theorem for one variable functions to

$$
f(\mathbf{x})=f(\mathbf{a}+\mathbf{h})=f(\mathbf{y}(1))=F(1)
$$

we get, for some $\theta \in[0,1]$,

Taylor's formula for n variables

Applying Taylor's Theorem for one variable functions to

$$
f(\mathbf{x})=f(\mathbf{a}+\mathbf{h})=f(\mathbf{y}(1))=F(1)
$$

we get, for some $\theta \in[0,1]$,
$f(\mathbf{x})=F(1)$

$$
\begin{aligned}
& =\quad F(0)+\frac{F^{\prime}(0)}{1!}(1-0)+\cdots+\frac{F^{(m)}(0)}{m!}(1-0)^{m}+\frac{F^{(m+1)}(\theta)}{(m+1)!} \\
& = \\
& \quad f(\mathbf{a})+\frac{(\mathbf{h} \cdot \nabla) f(\mathbf{a})}{1!}+\cdots+\frac{(\mathbf{h} \cdot \nabla)^{m} f(\mathbf{a})}{m!} \\
& \quad+\frac{(\mathbf{h} \cdot \nabla)^{m+1} f(\mathbf{a}+\theta \mathbf{h})}{(m+1)!} \\
& = \\
& \quad p_{m}(\mathbf{x})+r_{m}(\mathbf{x}, \theta) .
\end{aligned}
$$

Taylor's formula for n variables

Applying Taylor's Theorem for one variable functions to

$$
f(\mathbf{x})=f(\mathbf{a}+\mathbf{h})=f(\mathbf{y}(1))=F(1),
$$

we get, for some $\theta \in[0,1]$,
$f(\mathbf{x})=F(1)$

$$
\begin{aligned}
& = \\
& =F(0)+\frac{F^{\prime}(0)}{1!}(1-0)+\cdots+\frac{F^{(m)}(0)}{m!}(1-0)^{m}+\frac{F^{(m+1)}(\theta)}{(m+1)!} \\
& = \\
& \quad f(\mathbf{a})+\frac{(\mathbf{h} \cdot \nabla) f(\mathbf{a})}{1!}+\cdots+\frac{(\mathbf{h} \cdot \nabla)^{m} f(\mathbf{a})}{m!} \\
& \quad+\frac{(\mathbf{h} \cdot \nabla)^{m+1} f(\mathbf{a}+\theta \mathbf{h})}{(m+1)!} \\
& = \\
& \quad p_{m}(\mathbf{x})+r_{m}(\mathbf{x}, \theta) .
\end{aligned}
$$

The polynomial $p_{m}(\mathbf{x})$ is called the m-th degree Taylor polynomial of $f(\mathbf{x})$ at \mathbf{a}.

Taylor's formula for n variables - Summary

$$
\text { Let } \mathbf{h}=\mathbf{x}-\mathbf{a} . \text { Let }(\mathbf{h} \cdot \nabla) f=\mathbf{h} \cdot \nabla f \text {. }
$$

Then,

$$
\begin{aligned}
f(\mathbf{x})= & f(\mathbf{a})+\frac{(\mathbf{h} \cdot \nabla) f(\mathbf{a})}{1!}+\frac{(\mathbf{h} \cdot \nabla)^{2} f(\mathbf{a})}{2!}+\cdots+\frac{(\mathbf{h} \cdot \nabla)^{m} f(\mathbf{a})}{m!} \\
& +\frac{(\mathbf{h} \cdot \nabla)^{m+1} f(\mathbf{a}+\theta \mathbf{h})}{(m+1)!} \\
= & p_{m}(\mathbf{x})+r_{m}(\mathbf{x}, \theta),
\end{aligned}
$$

for some $\theta \in[0,1]$. The polynomial $p_{m}(\mathbf{x})$ is called the m-th degree Taylor polynomial of $f(\mathbf{x})$ at a.

Why do we need Taylor's polynomials?

$r_{m}(\mathbf{x}, \theta)$ is usually much smaller than $p_{m}(\mathbf{x})$ for large m, i.e.,

$$
f(\mathbf{x}) \approx p_{m}(\mathbf{x})
$$

This useful for approximating function that is hard to compute.
As shown in the picture, $p_{2}\left(x_{1}, x_{2}\right)$ is a pretty good approximation for $f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{3}}$ at $(1,2)$. We will compute it shortly.

What are $(\mathrm{h} \cdot \nabla)^{m} f$?

By definition,

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla) f & =\mathbf{h} \cdot(\nabla f)=\left(h_{1}, \ldots, h_{n}\right) \cdot\left(f_{1}, f_{2}, \ldots, f_{n}\right) \\
& =h_{1} f_{1}+\cdots+h_{n} f_{n}=\sum_{i=1}^{n} h_{i} f_{i} .
\end{aligned}
$$

What are $(\mathrm{h} \cdot \nabla)^{m} f$?

By definition,

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla) f & =\mathbf{h} \cdot(\nabla f)=\left(h_{1}, \ldots, h_{n}\right) \cdot\left(f_{1}, f_{2}, \ldots, f_{n}\right) \\
& =h_{1} f_{1}+\cdots+h_{n} f_{n}=\sum_{i=1}^{n} h_{i} f_{i} .
\end{aligned}
$$

Then

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla)^{2} f & =(\mathbf{h} \cdot \nabla) \sum_{i=1}^{n} h_{i} f_{i}=\sum_{i=1}^{n} h_{i}(\mathbf{h} \cdot \nabla) f_{i} \\
& =\sum_{i=1}^{n} h_{i} \sum_{j=1}^{n} h_{j} f_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j} f_{i j}
\end{aligned}
$$

What are $(\mathrm{h} \cdot \nabla)^{m} f$?

By definition,

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla) f & =\mathbf{h} \cdot(\nabla f)=\left(h_{1}, \ldots, h_{n}\right) \cdot\left(f_{1}, f_{2}, \ldots, f_{n}\right) \\
& =h_{1} f_{1}+\cdots+h_{n} f_{n}=\sum_{i=1}^{n} h_{i} f_{i} .
\end{aligned}
$$

Then

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla)^{2} f & =(\mathbf{h} \cdot \nabla) \sum_{i=1}^{n} h_{i} f_{i}=\sum_{i=1}^{n} h_{i}(\mathbf{h} \cdot \nabla) f_{i} \\
& =\sum_{i=1}^{n} h_{i} \sum_{j=1}^{n} h_{j} f_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j} f_{i j}
\end{aligned}
$$

and similarly

$$
(\mathbf{h} \cdot \nabla)^{3} f=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} h_{i} h_{j} h_{k} f_{i j k}
$$

Note Here $f_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ and $f_{i j k}=\frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}}$

Taylor polynomials for two variables

Let $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{a}=\left(a_{1}, a_{2}\right)$ and $\mathbf{h}=\left(h_{1}, h_{2}\right)=\mathbf{x}-\mathbf{a}$. Then for $f\left(x_{1}, x_{2}\right)$, we have

$$
(\mathbf{h} \cdot \nabla) f=\sum_{i=1}^{2} h_{i} f_{i}=f_{1} h_{1}+f_{2} h_{2},
$$

Taylor polynomials for two variables

Let $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{a}=\left(a_{1}, a_{2}\right)$ and $\mathbf{h}=\left(h_{1}, h_{2}\right)=\mathbf{x}-\mathbf{a}$. Then for $f\left(x_{1}, x_{2}\right)$, we have

$$
(\mathbf{h} \cdot \nabla) f=\sum_{i=1}^{2} h_{i} f_{i}=f_{1} h_{1}+f_{2} h_{2}
$$

and

$$
\begin{aligned}
(\mathbf{h} \cdot \nabla)^{2} f & =\sum_{i=1}^{2} \sum_{j=1}^{2} h_{i} h_{j} f_{i j} \\
& =f_{11} h_{1} h_{1}+f_{21} h_{2} h_{1}+f_{12} h_{1} h_{2}+f_{22} h_{2} h_{2} \\
& =f_{11} h_{1}^{2}+2 f_{12} h_{1} h_{2}+f_{22} h_{2}^{2},
\end{aligned}
$$

assuming that f_{21} and f_{12} are continuous.

Taylor polynomials for two variables (2)(3)(3)

Therefore, for two variable functions $f\left(x_{1}, x_{2}\right)$,

$$
p_{1}(\mathbf{x})=f(\mathbf{a})+(\mathbf{h} \cdot \nabla) f(\mathbf{a})=f(\mathbf{a})+f_{1}(\mathbf{a}) h_{1}+f_{2}(\mathbf{a}) h_{2}
$$

which is just the tangent plane of $f(\mathbf{x})$ at \mathbf{a}.

Taylor polynomials for two variables (2)(3)(3)

Therefore, for two variable functions $f\left(x_{1}, x_{2}\right)$,

$$
p_{1}(\mathbf{x})=f(\mathbf{a})+(\mathbf{h} \cdot \nabla) f(\mathbf{a})=f(\mathbf{a})+f_{1}(\mathbf{a}) h_{1}+f_{2}(\mathbf{a}) h_{2}
$$

which is just the tangent plane of $f(\mathbf{x})$ at \mathbf{a}. And

$$
\begin{aligned}
p_{2}(\mathbf{x})= & f(\mathbf{a})+(\mathbf{h} \cdot \nabla) f(\mathbf{a})+\frac{1}{2!}(\mathbf{h} \cdot \nabla)^{2} f(\mathbf{a}) \\
= & f(\mathbf{a})+f_{1}(\mathbf{a}) h_{1}+f_{2}(\mathbf{a}) h_{2} \\
& +\frac{1}{2!}\left(f_{11}(\mathbf{a}) h_{1}^{2}+2 f_{12}(\mathbf{a}) h_{1} h_{2}+f_{22}(\mathbf{a}) h_{2}^{2}\right) .
\end{aligned}
$$

where $h_{1}=x_{1}-a_{1}$ and $h_{2}=x_{2}-a_{2}$.

Example

Qustions: Find $p_{2}\left(x_{1}, x_{2}\right)$ for the function $f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{3}}$ at $(1,2)$.

Example

Qustions: Find $p_{2}\left(x_{1}, x_{2}\right)$ for the function $f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{3}}$ at $(1,2)$.

For this question,

$$
\mathbf{a}=(1,2), \quad \mathbf{h}=\mathbf{x}-\mathbf{a}=\left(h_{1}, h_{2}\right)=\left(x_{1}-1, x_{2}-2\right) .
$$

Example

Qustions: Find $p_{2}\left(x_{1}, x_{2}\right)$ for the function $f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{3}}$ at $(1,2)$.

For this question,

$$
\mathbf{a}=(1,2), \quad \mathbf{h}=\mathbf{x}-\mathbf{a}=\left(h_{1}, h_{2}\right)=\left(x_{1}-1, x_{2}-2\right) .
$$

So $f(\mathbf{a})=3$ and the partial derivatives are

$$
f_{1}(\mathbf{a})=\frac{1}{3}, \quad f_{2}(\mathbf{a})=2
$$

and

$$
f_{11}(\mathbf{a})=\frac{8}{27}, \quad f_{12}(\mathbf{a})=f_{21}(\mathbf{a})=-\frac{2}{9}, \quad f_{22}(\mathbf{a})=\frac{2}{3}
$$

Example - Solution

Putting these numbers into the formula, we get

$$
\begin{aligned}
p_{2}\left(x_{1}, x_{2}\right)= & f(\mathbf{a})+f_{1}(\mathbf{a}) h_{1}+f_{2}(\mathbf{a}) h_{2} \\
& +\frac{1}{2!}\left(f_{11}(\mathbf{a}) h_{1}^{2}+2 f_{12}(\mathbf{a}) h_{1} h_{2}+f_{22}(\mathbf{a}) h_{2}^{2}\right) \\
= & 3+\frac{1}{3}\left(x_{1}-1\right)+2\left(x_{2}-2\right) \\
& +\frac{1}{2}\left(\frac{8}{27}\left(x_{1}-1\right)^{2}-\frac{4}{9}\left(x_{1}-1\right)\left(x_{2}-2\right)+\frac{2}{3}\left(x_{2}-2\right)^{2}\right)
\end{aligned}
$$

This is a much better approximation for $f\left(x_{1}, x_{2}\right)$ than $p_{1}\left(x_{1}, x_{2}\right)$ (the tangent plane) around (1,2). For example

$$
\begin{aligned}
p_{1}(1.02,1.97) & =2.94666666666667 \\
p_{2}(1.02,1.97) & =2.94715925925926 \\
f(1.02,1.97) & =2.94716355162044
\end{aligned}
$$

Quiz

Which of the following is $p_{2}(x, y)$ for $f(x, y)=e^{x+2 y}$ at $(0,0)$?

1. $1+x+2 y+\left(x^{2}+4 x y+4 y^{2}\right)$
2. $1+x+2 y+\frac{1}{2}\left(x^{2}+4 x y+4 y^{2}\right)$
3. $1+x+2 y+\frac{1}{2}\left(x^{2}+2 x y+4 y^{2}\right)$
4. $1+x+2 y+\frac{1}{2}\left(x^{2}+4 x y+2 y^{2}\right)$

Quiz

Which of the following is $p_{2}(x, y)$ for $f(x, y)=e^{x+2 y}$ at $(0,0)$?

1. $1+x+2 y+\left(x^{2}+4 x y+4 y^{2}\right)$
2. $1+x+2 y+\frac{1}{2}\left(x^{2}+4 x y+4 y^{2}\right)$
3. $1+x+2 y+\frac{1}{2}\left(x^{2}+2 x y+4 y^{2}\right)$
4. $1+x+2 y+\frac{1}{2}\left(x^{2}+4 x y+2 y^{2}\right)$

Answer

$$
p_{2}(x, y)=1+x+2 y+\frac{1}{2}\left(x^{2}+4 x y+4 y^{2}\right)
$$

