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Summary

Please watch this video before the lecture: 9

Today we will talk about

• 12.9 Taylor’s Formula, Taylor Series, and Approximations
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https://www.youtube.com/watch?v=1Yz6je5wpzg&


Brook Taylor

Brook Taylor (1685–1731). English mathematician.
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Computing without a computer

You are asked to compute 𝑓(1.02, 1.97) for 𝑓 = √𝑥2 + 𝑦3 without
a computer. 😟

You can approximate it with the linearisation of 𝑓(𝑥, 𝑦), i.e.,

𝑓(1.02, 1.97) ≈ 𝑓(1, 2) + 𝜕𝑓
𝜕𝑥(1, 2)(1.02 − 1) + 𝜕𝑓

𝜕𝑦 (1, 2)(1.97 − 2)

= 2.94667.

Questions: How good is this approximation? If we want to be
more precise, how can we do it?
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Review: Taylor’s formula for
one-variable



Taylor’s formula for one-variable

The Taylor polynomial of degree 𝑛 for the function 𝑓(𝑥) at 𝑥 = 𝑎 is

𝑝𝑛(𝑥) = 𝑓(𝑎)+ 𝑓 ′(𝑎)
1! (𝑥−𝑎)+ 𝑓″(𝑎)

2! (𝑥−𝑎)2 +⋯+ 𝑓 (𝑛)(𝑎)
𝑛! (𝑥−𝑎)𝑛

We have 𝑝𝑛(𝑥) ≈ 𝑓(𝑥) near 𝑎 because

𝑟𝑛(𝑥) = 𝑓(𝑥) − 𝑝𝑛(𝑥) = 𝑓 (𝑛+1)(𝑠)
(𝑛 + 1)! (𝑥 − 𝑎)𝑛+1

for some number 𝑠 between 𝑎 and 𝑥 — Taylor’s Theorem (Thm.
4.12).
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Example —
√𝑥

For 𝑓(𝑥) = √𝑥, at the point 𝑥 = 1,

𝑝1(1.1) =1.05000000000000
𝑝2(1.1) =1.04875000000000

…
𝑝9(1.1) =1.04880884817101
𝑓(1.1) =1.04880884817015
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Example —
√𝑥

For 𝑓(𝑥) = √𝑥, at the point 𝑥 = 1,
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Taylor’s formula for several variables



A bit notations

Let h = (ℎ1, … ℎ𝑛). For a function 𝑔(𝑥1, … , 𝑥𝑛), we define

(h ⋅ ∇)𝑔 = h ⋅ ∇𝑔 = (ℎ1, … , ℎ𝑛) ⋅ ( 𝜕𝑔
𝜕𝑥1

, 𝜕𝑔
𝜕𝑥2

, … 𝜕𝑔
𝜕𝑥𝑛

)

= ℎ1
𝜕𝑔
𝜕𝑥1

+ ℎ2
𝜕𝑔
𝜕𝑥2

+ ⋯ + ℎ𝑛
𝜕𝑔

𝜕𝑥𝑛

For example, if 𝑔(𝑥, 𝑦) = 𝑥𝑦 and h = (2, 1), then

(h ⋅ ∇)𝑔 = h ⋅ ∇𝑔 = (2, 1) ⋅ (𝑦, 𝑥) = 2𝑦 + 𝑥.

Since (h ⋅ ∇)𝑔 is again a function of 𝑛 variables, we can do this
repeatedly

(ℎ ⋅ ∇)2𝑔 = (ℎ ⋅ ∇)(ℎ ⋅ ∇)𝑔
(ℎ ⋅ ∇)3𝑔 = (ℎ ⋅ ∇)(ℎ ⋅ ∇)(ℎ ⋅ ∇)𝑔

…
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Taylor’s formula for 𝑛 variables

Given 𝑓 ∶ ℝ𝑛 ↦ ℝ and a = (𝑎1, … , 𝑎𝑛), x = (𝑥1, … , 𝑥𝑛), let
h = (ℎ1, … , ℎ𝑛) = x − a and

𝐹(𝑡) = 𝑓(y(𝑡)) = 𝑓(a + 𝑡h).
where

y(𝑡) = a+𝑡h = (𝑎1, … , 𝑎𝑛)+𝑡(ℎ1, … , ℎ𝑛) = (𝑎1+𝑡ℎ1, … , 𝑎𝑛+𝑡ℎ𝑛)

Then by the chain rule

𝐹 ′(𝑡) = d
d𝑡𝑓(y(𝑡)) = 𝑓 ′(y(𝑡))y′(𝑡) = [𝑓1(y(𝑡)) … 𝑓𝑛(y(𝑡))]

⎡
⎢
⎢
⎢
⎣

ℎ1

⋮
ℎ𝑛

⎤
⎥
⎥
⎥
⎦

= h ⋅ ∇𝑓(y(𝑡)) = (h ⋅ ∇)𝑓(y(𝑡)).
Note 𝑓𝑖 = 𝜕𝑓

𝜕𝑥𝑖
, the partial derivative of 𝑓 with respect to 𝑥𝑖.
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Taylor’s formula for 𝑛 variables

Let 𝑔(x) = (h ⋅ ∇)𝑓(x). Taking derivative one more time, we get

𝐹 ″(𝑡) = d
d𝑡(h ⋅ ∇)𝑓(y(𝑡)) = d

d𝑡𝑔(y(𝑡))

= (h ⋅ ∇) 𝑔(y(𝑡)) = (h ⋅ ∇)2 𝑓(y(𝑡))

Taking derivative 3 times, we get

𝐹 ‴(𝑡) =(h ⋅ ∇)3𝑓(y(𝑡))

Taking derivative 𝑚 times, we get

𝐹 (𝑚)(𝑡) =(h ⋅ ∇)𝑚𝑓(y(𝑡)) = (h ⋅ ∇)𝑚𝑓(a + 𝑡h)

In particular

𝐹 (𝑚)(0) = (h ⋅ ∇)𝑚𝑓(a)
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Taylor’s formula for 𝑛 variables

Applying Taylor’s Theorem for one variable functions to

𝑓(x) = 𝑓(a + h) = 𝑓(y(1)) = 𝐹(1),
we get, for some 𝜃 ∈ [0, 1],

𝑓(x) = 𝐹(1)

= 𝐹(0) + 𝐹 ′(0)
1! (1 − 0) + ⋯ + 𝐹 (𝑚)(0)

𝑚! (1 − 0)𝑚 + 𝐹 (𝑚+1)(𝜃)
(𝑚 + 1)!

= 𝑓(a) + (h ⋅ ∇)𝑓(a)
1! + ⋯ + (h ⋅ ∇)𝑚𝑓(a)

𝑚!
+ (h ⋅ ∇)𝑚+1𝑓(a + 𝜃h)

(𝑚 + 1)!
= 𝑝𝑚(x) + 𝑟𝑚(x, 𝜃).

The polynomial 𝑝𝑚(x) is called the 𝑚-th degree Taylor polynomial
of 𝑓(x) at a.
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Taylor’s formula for 𝑛 variables – Summary

Let h = x − a. Let (h ⋅ ∇)𝑓 = h ⋅ ∇𝑓 .

Then,

𝑓(x) = 𝑓(a) + (h ⋅ ∇)𝑓(a)
1! + (h ⋅ ∇)2𝑓(a)

2! + ⋯ + (h ⋅ ∇)𝑚𝑓(a)
𝑚!

+ (h ⋅ ∇)𝑚+1𝑓(a + 𝜃h)
(𝑚 + 1)!

= 𝑝𝑚(x) + 𝑟𝑚(x, 𝜃),

for some 𝜃 ∈ [0, 1]. The polynomial 𝑝𝑚(x) is called the 𝑚-th
degree Taylor polynomial of 𝑓(x) at a.
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Why do we need Taylor’s polynomials?

𝑟𝑚(x, 𝜃) is usually much smaller than 𝑝𝑚(x) for large 𝑚, i.e.,

𝑓(x) ≈ 𝑝𝑚(x).
This useful for approximating function that is hard to compute.

As shown in the picture, 𝑝2(𝑥1, 𝑥2) is a pretty good approximation for
𝑓(𝑥1, 𝑥2) = √𝑥2

1 + 𝑥3
2 at (1, 2). We will compute it shortly.

x2
3 + x1

2

p1(x1, x2)

p2(x1, x2)
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What are (h ⋅ ∇)𝑚𝑓?

By definition,

(h ⋅ ∇)𝑓 = h ⋅ (∇𝑓) = (ℎ1, … , ℎ𝑛) ⋅ (𝑓1, 𝑓2, … , 𝑓𝑛)

= ℎ1𝑓1 + ⋯ + ℎ𝑛𝑓𝑛 =
𝑛

∑
𝑖=1

ℎ𝑖𝑓𝑖.

Then

(h ⋅ ∇)2𝑓 = (h ⋅ ∇)
𝑛

∑
𝑖=1

ℎ𝑖𝑓𝑖 =
𝑛

∑
𝑖=1

ℎ𝑖(h ⋅ ∇)𝑓𝑖

=
𝑛

∑
𝑖=1

ℎ𝑖
𝑛

∑
𝑗=1

ℎ𝑗𝑓𝑖𝑗 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

ℎ𝑖ℎ𝑗𝑓𝑖𝑗

and similarly

(h ⋅ ∇)3𝑓 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

ℎ𝑖ℎ𝑗ℎ𝑘𝑓𝑖𝑗𝑘

Note Here 𝑓𝑖𝑗 = 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

and 𝑓𝑖𝑗𝑘 = 𝜕3𝑓
𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
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(h ⋅ ∇)2𝑓 = (h ⋅ ∇)
𝑛

∑
𝑖=1

ℎ𝑖𝑓𝑖 =
𝑛

∑
𝑖=1

ℎ𝑖(h ⋅ ∇)𝑓𝑖

=
𝑛

∑
𝑖=1

ℎ𝑖
𝑛

∑
𝑗=1

ℎ𝑗𝑓𝑖𝑗 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

ℎ𝑖ℎ𝑗𝑓𝑖𝑗

and similarly

(h ⋅ ∇)3𝑓 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

ℎ𝑖ℎ𝑗ℎ𝑘𝑓𝑖𝑗𝑘

Note Here 𝑓𝑖𝑗 = 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

and 𝑓𝑖𝑗𝑘 = 𝜕3𝑓
𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
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Taylor polynomials for two variables

Let x = (𝑥1, 𝑥2), a = (𝑎1, 𝑎2) and h = (ℎ1, ℎ2) = x − a. Then for
𝑓(𝑥1, 𝑥2), we have

(h ⋅ ∇)𝑓 =
2

∑
𝑖=1

ℎ𝑖𝑓𝑖 = 𝑓1ℎ1 + 𝑓2ℎ2,

and

(h ⋅ ∇)2𝑓 =
2

∑
𝑖=1

2
∑
𝑗=1

ℎ𝑖ℎ𝑗𝑓𝑖𝑗

= 𝑓11ℎ1ℎ1 + 𝑓21ℎ2ℎ1 + 𝑓12ℎ1ℎ2 + 𝑓22ℎ2ℎ2

= 𝑓11ℎ2
1 + 2𝑓12ℎ1ℎ2 + 𝑓22ℎ2

2,

assuming that 𝑓21 and 𝑓12 are continuous.
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Taylor polynomials for two variables 😲😲😲😲

Therefore, for two variable functions 𝑓(𝑥1, 𝑥2),

𝑝1(x) = 𝑓(a) + (h ⋅ ∇)𝑓(a) = 𝑓(a) + 𝑓1(a)ℎ1 + 𝑓2(a)ℎ2

which is just the tangent plane of 𝑓(x) at a.

And

𝑝2(x) = 𝑓(a) + (h ⋅ ∇)𝑓(a) + 1
2!(h ⋅ ∇)2𝑓(a)

= 𝑓(a) + 𝑓1(a)ℎ1 + 𝑓2(a)ℎ2

+ 1
2! (𝑓11(a)ℎ2

1 + 2𝑓12(a)ℎ1ℎ2 + 𝑓22(a)ℎ2
2) .

where ℎ1 = 𝑥1 − 𝑎1 and ℎ2 = 𝑥2 − 𝑎2.
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Example

Qustions: Find 𝑝2(𝑥1, 𝑥2) for the function 𝑓(𝑥1, 𝑥2) = √𝑥2
1 + 𝑥3

2
at (1, 2).

For this question,

a = (1, 2), h = x − a = (ℎ1, ℎ2) = (𝑥1 − 1, 𝑥2 − 2).

So 𝑓(a) = 3 and the partial derivatives are

𝑓1(a) = 1
3, 𝑓2(a) = 2

and

𝑓11(a) = 8
27 , 𝑓12(a) = 𝑓21(a) = −2

9, 𝑓22(a) = 2
3.
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Example – Solution

Putting these numbers into the formula, we get

𝑝2(𝑥1, 𝑥2) = 𝑓(a) + 𝑓1(a)ℎ1 + 𝑓2(a)ℎ2

+ 1
2! (𝑓11(a)ℎ2

1 + 2𝑓12(a)ℎ1ℎ2 + 𝑓22(a)ℎ2
2)

= 3 + 1
3(𝑥1 − 1) + 2(𝑥2 − 2)

+ 1
2 ( 8

27(𝑥1 − 1)2 − 4
9(𝑥1 − 1)(𝑥2 − 2) + 2

3(𝑥2 − 2)2)

This is a much better approximation for 𝑓(𝑥1, 𝑥2) than 𝑝1(𝑥1, 𝑥2)
(the tangent plane) around (1, 2). For example

𝑝1(1.02, 1.97) = 2.94666666666667
𝑝2(1.02, 1.97) = 2.94715925925926
𝑓(1.02, 1.97) = 2.94716355162044
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Quiz

Which of the following is 𝑝2(𝑥, 𝑦) for 𝑓(𝑥, 𝑦) = 𝑒𝑥+2𝑦 at (0, 0)?

1. 1 + 𝑥 + 2𝑦 + (𝑥2 + 4𝑥𝑦 + 4𝑦2)
2. 1 + 𝑥 + 2𝑦 + 1

2 (𝑥2 + 4𝑥𝑦 + 4𝑦2)
3. 1 + 𝑥 + 2𝑦 + 1

2 (𝑥2 + 2𝑥𝑦 + 4𝑦2)
4. 1 + 𝑥 + 2𝑦 + 1

2 (𝑥2 + 4𝑥𝑦 + 2𝑦2)

Answer

𝑝2(𝑥, 𝑦) = 1 + 𝑥 + 2𝑦 + 1
2 (𝑥2 + 4𝑥𝑦 + 4𝑦2)
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