Lecture 10 -- 13.1 Extreme Values

Xing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019
Department of Mathematics, Uppsala University, Sweden

Local maximum and local minium $\mathbb{R}^{n} \rightarrow \mathbb{R}$

A function $f(\boldsymbol{x})$ has a local maximum value (or a local minimum value) at a point a if $f(\boldsymbol{x}) \geq f(\boldsymbol{a})$ (or $f(\boldsymbol{x}) \leq f(\boldsymbol{a})$) for all \boldsymbol{x} close to \boldsymbol{a}.

$$
5 e^{\frac{1}{50}\left(-x^{2}-y^{2}\right)} \cos (x) \cos (y)
$$

y

Absolute maximum and absolute minium $\mathbb{R}^{2} \rightarrow \mathbb{R}$

A function $f(\boldsymbol{x})$ has an absolute maximum value (or an absolute minimum value) at a point \boldsymbol{a} domain if $f(\boldsymbol{x}) \geq f(\boldsymbol{a})($ or $f(\boldsymbol{x}) \leq f(\boldsymbol{a}))$ for all \boldsymbol{x} in its domain.

$$
5 e^{\frac{1}{50}\left(-x^{2}-y^{2}\right)} \cos (x) \cos (y)
$$

The existence of absolute extreme values

If f is a continuous function whose domain is a closed and bounded, then f has absolute maximum and minimum values.

Example:

This functions have both absolute maxima and absolute minima.

- $f(x, y)=x^{2}+y^{2}$ defined on $-1 \leq x \leq 1,-1 \leq y \leq 1$

Necessary conditions for extreme values

A function $f(x, y)$ can have a local or absolute extreme value at a point (a, b) only if the point is one of:

- (a) a critical point -- $\nabla f(a, b)=0$
- (b) a singular point -- $\nabla f(a, b)$ does not exist
- (c) a boundary point

Proof:

- If (a, b) is not on the boundary and is not a singular point, then $\nabla f(a, b)$ exists.
- If $\nabla f(a, b) \neq 0$, then f increases along $\nabla f(a, b)$ and decreases along $-\nabla f(a, b)$
- So in this case for $f(a, b)$ to an extreme value, we must have $\nabla f(a, b)=0$.

Example - critical point

The function $f(x, y)=x^{2}+y^{2}$ has one critical point at $(0,0)$. It's an absolute minimum.

Example - singular point

The function $f(x, y)=\sqrt{x^{2}+y^{2}}$ has one singular point at $(0,0)$. It's an absolute minimum.

Example - critical point but not extreme point

The function $f(x, y)=x^{2}-y^{2}$ has one critical point at $(0,0)$. It's neither a minimum nor a maximum. It's called a saddle point.

Classification of critical points

If (a, b) is a critical point of $f(x, y)$, then it can be classified by checking

$$
\Delta f=f(a+h, b+k)-f(a, b)
$$

If we can find $r>0$ such that for all $h, k \leq r$

- Δf is always negative, then (a, b) is a local maximum.
- Δf is always positive, then (a, b) is a local minimum.
- Otherwise, (a, b) is a saddle point.

Example

Find and classify the critical points of $f(x, y)=2 x^{3}-6 x y+3 y^{2}$.

A second derivative test $-\mathbb{R}^{2} \rightarrow \mathbb{R}$

For $f(\boldsymbol{x})=f\left(x_{1}, x_{2}\right)$, the Hessian matrix is defined by

$$
\mathcal{H}(\boldsymbol{x})=\left(\begin{array}{ll}
f_{11}(\boldsymbol{x}) & f_{12}(\boldsymbol{x}) \\
f_{21}(\boldsymbol{x}) & f_{22}(\boldsymbol{x})
\end{array}\right)
$$

Let $D_{1}=f_{11}$ and $D_{2}=\operatorname{det} H=f_{11} f_{22}-f_{12} f_{21}$. Then

- (a) If $D_{1}>0$ and $D_{2}>0$, then $\mathcal{H}(\boldsymbol{a})$ is positive definite - minimum.
- (b) If $D_{1}<0$ and $D_{2}>0$, then $\mathcal{H}(\boldsymbol{a})$ is negative definite - maximum.
- (c) If $D_{2}<0$, then $\mathcal{H}(\boldsymbol{a})$ is indefinite - saddle point.
- (d) Otherwise, we know nothing.
(Check Section 10.7 for the definitions.)

Example

The critical points of $f(x, y)=2 x^{3}-6 x y+3 y^{2}$ are $(0,0)$ and $(1,1)$.

The Hessian matrix of this function is

$$
\left(\begin{array}{cc}
12 x & -6 \\
-6 & 6
\end{array}\right)
$$

At the two critical points $(0,0)$ and $(1,1)$, this is

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & -6 \\
-6 & 6
\end{array}\right) \\
& \left(\begin{array}{cc}
12 & -6 \\
-6 & 6
\end{array}\right)
\end{aligned}
$$

So $(0,0)$ is a saddle point and $(1,1)$ is minimum.

