Lecture 10 -- 13.1 Extreme Values

Xing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Local maximum and local minium $\mathbb{R}^n \to \mathbb{R}$

A function $f(\mathbf{x})$ has a local maximum value (or a local minimum value) at a point a if $f(\mathbf{x}) \ge f(a)$ (or $f(\mathbf{x}) \le f(a)$) for all \mathbf{x} close to \mathbf{a} .

Absolute maximum and absolute minium $\mathbb{R}^2 \rightarrow \mathbb{R}$

A function f(x) has an absolute maximum value (or an absolute minimum value) at a point a domain if $f(x) \ge f(a)$ (or $f(x) \le f(a)$) for all x in its domain.

Χ

The existence of absolute extreme values

If *f* is a **continuous** function whose domain is a **closed** and **bounded**, then *f* has absolute maximum and minimum values.

Example:

This functions have both absolute maxima and absolute minima.

Necessary conditions for extreme values

A function f(x, y) can have a local or absolute extreme value at a point (a, b) only if the point is one of:

- (a) a critical point -- $\nabla f(a, b) = 0$
- (b) a singular point -- $\nabla f(a, b)$ does **not** exist
- (c) a boundary point

Proof:

- If (a, b) is **not** on the boundary and is not a singular point, then $\nabla f(a, b)$ exists.
- If $\nabla f(a, b) \neq 0$, then f increases along $\nabla f(a, b)$ and decreases along $-\nabla f(a, b)$
- So in this case for f(a, b) to an extreme value, we must have $\nabla f(a, b) = 0$.

Example — critical point

The function $f(x, y) = x^2 + y^2$ has one critical point at (0, 0). It's an absolute minimum.

Example — singular point

Example — critical point but not extreme point

The function $f(x, y) = x^2 - y^2$ has one critical point at (0, 0). It's neither a minimum nor a maximum. It's called a saddle point.

Classification of critical points

If (a, b) is a critical point of f(x, y), then it can be classified by checking

 $\Delta \mathbf{f} = f(a+h, b+k) - f(a, b)$

If we can find r > 0 such that for all $h, k \le r$

- Δf is always negative, then (a, b) is a local maximum.
- Δf is always positive, then (a, b) is a local minimum.
- Otherwise, (*a*, *b*) is a saddle point.

Example

Find and classify the critical points of $f(x, y) = 2 x^3 - 6 x y + 3 y^2$.

A second derivative test $-\mathbb{R}^2 \rightarrow \mathbb{R}$

For $f(\mathbf{x}) = f(x_1, x_2)$, the Hessian matrix is defined by

$$\mathcal{H}(\mathbf{x}) = \begin{pmatrix} f_{11}(\mathbf{x}) & f_{12}(\mathbf{x}) \\ f_{21}(\mathbf{x}) & f_{22}(\mathbf{x}) \end{pmatrix}$$

Let $D_1 = f_{11}$ and $D_2 = \det H = f_{11} f_{22} - f_{12} f_{21}$. Then

- (a) If $D_1 > 0$ and $D_2 > 0$, then $\mathcal{H}(\boldsymbol{a})$ is positive definite minimum.
- (b) If $D_1 < 0$ and $D_2 > 0$, then $\mathcal{H}(\boldsymbol{a})$ is negative definite maximum.
- (c) If $D_2 < 0$, then $\mathcal{H}(\boldsymbol{a})$ is indefinite saddle point.
- (d) Otherwise, we know nothing.

(Check Section 10.7 for the definitions.)

Example

The critical points of $f(x, y) = 2 x^3 - 6 x y + 3 y^2$ are (0, 0) and (1,1).

The Hessian matrix of this function is

$$\begin{pmatrix} 12 \times -6 \\ -6 & 6 \end{pmatrix}$$

At the two critical points (0, 0) and (1,1), this is

$$\begin{pmatrix} 0 & -6 \\ -6 & 6 \end{pmatrix}$$
$$\begin{pmatrix} 12 & -6 \\ -6 & 6 \end{pmatrix}$$

So (0, 0) is a saddle point and (1, 1) is minimum.