Lecture 11 - 13.2 Extreme Values of Functions Defined on Restricted Domains

Xing Shi Cai
Several Variable Calculus, 1MA017, Autumn 2019
Department of Mathematics, Uppsala University, Sweden

Review - A second derivative test $-\mathbb{R}^{2} \rightarrow \mathbb{R}$

For $f(\boldsymbol{x})=f\left(x_{1}, x_{2}\right)$, the Hessian matrix is defined by

$$
\mathcal{H}(\boldsymbol{x})=\left(\begin{array}{ll}
f_{11}(\boldsymbol{x}) & f_{12}(\boldsymbol{x}) \\
f_{21}(\boldsymbol{x}) & f_{22}(\boldsymbol{x})
\end{array}\right)
$$

Let $D_{1}=f_{11}$ and $D_{2}=\operatorname{det} H=f_{11} f_{22}-f_{12} f_{21}$. Then

- (a) If $D_{1}>0$ and $D_{2}>0$, then $\mathcal{H}(\boldsymbol{a})$ is positive definite - minimum.
- (b) If $D_{1}<0$ and $D_{2}>0$, then $\mathcal{H}(\boldsymbol{a})$ is negative definite - maximum.
- (c) If $D_{2}<0$, then $\mathcal{H}(\boldsymbol{a})$ is indefinite - saddle point.
- (d) Otherwise, we know nothing.

See Theorem 8 of Section 10.7

Example - A second derivative test $-\mathbb{R}^{2} \rightarrow \mathbb{R}$
The critical points of $f(x, y)=x^{2} y^{3}+27 x y+27 x$ are

$$
(-1,-3),(0,-1)
$$

The Hessian matrix is

$$
\left(\begin{array}{cc}
2 y^{3} & 27+6 x y^{2} \\
27+6 x y^{2} & 6 x^{2} y
\end{array}\right)
$$

At the two critical points, this is

$$
\left(\begin{array}{ll}
-54 & -27 \\
-27 & -18
\end{array}\right),\left(\begin{array}{cc}
-2 & 27 \\
27 & 0
\end{array}\right)
$$

The D_{1} and D_{2} are
$(-54,243),(-2,-729)$
So the first point is a maximal point and the second point is a saddle points.

A second derivative test $-\mathbb{R}^{3} \rightarrow \mathbb{R}$

For $f(\boldsymbol{x})=f\left(x_{1}, x_{2} \ldots, x_{n}\right)$, the Hessian matrix is defined by

$$
\mathcal{H}(\boldsymbol{x})=\left(\begin{array}{lll}
f_{11}(\boldsymbol{x}) & f_{12}(\boldsymbol{x}) & f_{13}(\boldsymbol{x}) \\
f_{21}(\boldsymbol{x}) & f_{22}(\boldsymbol{x}) & f_{23}(\boldsymbol{x}) \\
f_{31}(\boldsymbol{x}) & f_{32}(\boldsymbol{x}) & f_{33}(\boldsymbol{x})
\end{array}\right)
$$

Let $D_{1}=f_{11}$ and $D_{2}=f_{11} f_{22}-f_{12} f_{21}$ and $D_{3}=\operatorname{det} \mathcal{H}(\boldsymbol{x})$.

- (a) If $D_{1}>0$ and $D_{2}>0$ and $D_{3}>0$, then $\mathcal{H}(\boldsymbol{a})$ is positive definite - minimum.
- (b) If $D_{1}<0$ and $D_{2}>0$ and $D_{3}<0$, then $\mathcal{H}(\boldsymbol{a})$ is negative definite - maximum.
- (c) If $D_{3} \neq 0$ but (a) and (b) are false, then $\mathcal{H}(\boldsymbol{a})$ is indefinite - saddle point.
- (d) Otherwise, we know nothing.

See Theorem 8 of Section 10.7

Example - second derivative test $-\mathbb{R}^{3} \rightarrow \mathbb{R}$

Show that

$$
f(x, y, z)=x^{2}-2 x y-2 x z+4 y^{2}+6 y z+2 z^{2}+1
$$

does not has a local extreme point at $(0,0,0)$.
Solution: The gradient of the function is

$$
\nabla \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(2 x-2 y-2 z,-2 x+8 y+6 z,-2 x+6 y+4 z)
$$

At the point $(0,0,0)$

$$
(0,0,0)
$$

So $(0,0,0)$ is a critical point.
However, the Hessian matrix at this point (actually, at anywhere) is

$$
\left(\begin{array}{ccc}
2 & -2 & -2 \\
-2 & 8 & 6 \\
-2 & 6 & 4
\end{array}\right)
$$

and D_{1}, D_{2}, D_{3} are

$$
(2,12,-8)
$$

So the matrix is indefinite and we do not have a extreme point.

Quiz

Step 1 - Critical points
The gradient of f is

$$
(-\sin (x),-\sin (y))
$$

So the critical points are $x=m \pi, y=n \pi$ for all integers m, n.

Step 2 - Second derivative test

The Hessian matrix of f is

$$
\left(\begin{array}{cc}
-\cos (x) & 0 \\
0 & -\cos (y)
\end{array}\right)
$$

So D_{1}, D_{2} are

$$
(-\cos (x), \cos (x) \cos (y))
$$

When the gradient is 0 , when is $D_{1}>0, D_{2}>0$ (minimum)?
So the answer is, for $m, n \in \mathbb{Z}$,

- $x=2 m \pi, y=2 n \pi$
- $x=2(m+1) \pi, y=2(n+1) \pi$
- $x=2 m \pi, y=2(n+1) \pi$
- $x=2(m+1) \pi, y=2 n \pi$

Finding the absolute extreme value

The existence of absolute max and min requires an argument.

- If the function is continuous and the domain of the function is closed and bounded then there are guaranteed maximum and minimum values.
- Otherwise, they do not necessarily exist and you have to argue they exist.

Absolute maximum and minimum values, if they exist, can be at

- (a) a critical point -- $\nabla f(a, b)=0$
- (b) a singular point -- $\nabla f(a, b)$ does not exist
- (c) a boundary point

Example

Determines if $f(x, y)=2 x y$ have maximal and minimal values for

$$
(x, y) \in D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}
$$

and determine where they are.

Example

Determines if $f(x, y)=x^{2}+x\left(y^{2}-1\right)$ have maximal and minimal values for

$$
(x, y) \in D=\{(x, y): 0 \leq x \leq 2,|y| \leq 2\}
$$

and determine where they are.

Example - Solution

Determines if $f(x, y)=x^{2}+x\left(y^{2}-1\right)$ have maximal and minimal values for

$$
(x, y) \in D=\{(x, y): 0 \leq x \leq 2,|y| \leq 2\}
$$

and determine where they are.

Critical points

$\nabla f(x, y)$, the gradient of $f(x, y)$, is

$$
\left(-1+2 x+y^{2}, 2 x y\right)
$$

The only solutions of $\nabla f(x, y)=(0,0)$, i.e., the critical points are

$$
(0,-1),\left(\frac{1}{2}, 0\right),(0,1)
$$

The Hessian matrix is

$$
\left(\begin{array}{cc}
2 & 2 y \\
2 y & 2 x
\end{array}\right)
$$

At the critical points, these are

$$
\left(\begin{array}{cc}
2 & -2 \\
-2 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 2 \\
2 & 0
\end{array}\right)
$$

The D_{1} and D_{2} of each matrix is

$$
(2,-4),(2,2),(2,-4)
$$

So only the point $\left(\frac{1}{2}, 0\right)$ is a local minimum with $f\left(\frac{1}{2}, 0\right)=-\frac{1}{4}$. The other two are saddle points.

Boundary points

When $x=2$ and $-2 \leq y \leq 2, f(x, y)$ is

$$
2\left(1+y^{2}\right)
$$

which has maximum value 10 at $y= \pm 2$ and minimal value 2 at $y=0$.

When $y= \pm 2$ and $0 \leq x \leq 2, f(x, y)$ is

$$
x(3+x)
$$

which has maximum value 10 at $x=2$ and minimal value 0 at $x=0$.

$$
x(x+3)
$$

When $x=0, f(x, y)=0$. So no local extreme points here.
Comparing all the local extreme points we found, we have one absolute minimal point $\left(\frac{1}{2}, 0\right)$ and two absolute maximal points at $(2, \pm 2)$.

Second derivative test in general

For $f(\boldsymbol{x})=f\left(x_{1}, x_{2} \ldots, x_{n}\right)$, the Hessian matrix is defined by

$$
\mathcal{H}(\mathbf{x})=\left(\begin{array}{cccc}
f_{11}(\boldsymbol{x}) & f_{12}(\boldsymbol{x}) & \ldots & f_{1 n}(\boldsymbol{x}) \\
f_{21}(\boldsymbol{x}) & f_{22}(\boldsymbol{x}) & \ldots & f_{2 n}(\boldsymbol{x}) \\
\vdots & \vdots & \ddots & \vdots \\
f_{n 1}(\boldsymbol{x}) & f_{n 2}(\boldsymbol{x}) & \ldots & f_{n n}(\boldsymbol{x})
\end{array}\right)
$$

- (a) If $\mathcal{H}(\boldsymbol{a})$ is positive definite, then a local minimum at \boldsymbol{a}.
- (b) If $\mathcal{H}(\boldsymbol{a})$ is negative definite, then a local maximum at \boldsymbol{a}.
- (c) If $\mathcal{H}(\boldsymbol{a})$ is indefinite, then a saddle point at \boldsymbol{a}.
- (d) Otherwise, we know nothing.

A matrix \mathcal{F} is

- (a) positive definite if $z^{\top} \mathcal{A} z>0$ for all n-dimensional column vector z.
- (b) negative definite if $z^{\top} \mathcal{A} z<0$ for all n-dimensional column vector z.
- (c) indefinite if $z^{\top} \mathcal{A} z<0<x^{\top} \mathcal{A} x$ for some n-dimensional column vector x, z.

A bit theory - Why does second derivative test work?

By Taylor's formula for n-variable functions

$$
\begin{aligned}
& f(\boldsymbol{a}+\boldsymbol{h})=f(\boldsymbol{a})+(h \cdot \nabla) f(\boldsymbol{a})+(h \cdot \nabla)^{2} f(\boldsymbol{a}+\theta \boldsymbol{h}) \\
& =f(a)+\sum_{i=1}^{n} h_{i} f_{i}(\boldsymbol{a})+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j} f_{i j}(\boldsymbol{a}+\theta \boldsymbol{h}) \\
& \quad=f(\boldsymbol{a})+h \cdot \nabla f(\boldsymbol{a})+\frac{1}{2} \boldsymbol{h}^{T} \mathcal{H}(\boldsymbol{a}+\theta \boldsymbol{h}) \boldsymbol{h}
\end{aligned}
$$

Since \boldsymbol{a} is a critical point, $\nabla f(\boldsymbol{a})=0$. When \boldsymbol{h} is small $\mathcal{H}(\boldsymbol{a}+\theta \boldsymbol{h}) \approx \mathcal{H}(\boldsymbol{a})$. So for \boldsymbol{h} small,

$$
f(\boldsymbol{a}+\boldsymbol{h})-f(\boldsymbol{a}) \approx \frac{1}{2} \boldsymbol{h}^{\top} \mathcal{H}(\boldsymbol{a}) \boldsymbol{h} \begin{cases}>0 & \text { if } \mathcal{H}(\mathbf{a}) \text { is positive definite } \\ <0 & \text { if } \mathcal{H}(\boldsymbol{a}) \text { is negative definite } \\ >0,<0 & \text { if } \mathcal{H}(\boldsymbol{a}) \text { is indefinite }\end{cases}
$$

