# Lecture 12 — 13.3 Lagrange Multipliers

#### Xing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019 Department of Mathematics, Uppsala University, Sweden

### Finding the absolute extreme value

Maximum and minimum value, if any, can only be found at

- (a) a critical point --  $\nabla f(a, b) = 0$
- (b) a singular point --  $\nabla f(a, b)$  does **not** exist
- (c) a boundary point

We have to check all of them to find absolute extreme values.

What can we do if the boundary is given by a curve g(x, y) = 0?

## Finding extreme values with constraint

We may want to find the maximal and minimal values of f(x, y) when (x, y) are restricted to the curve g(x, y) = 0. Example Find the minimal value of  $f(x, y) = x^2 + y^2$  for (x, y) on the curve  $g(x, y) = y + x^2 + 1 = 0$ .





## Minimal value and gradients

It's easy to see from the picture that on the curve  $g(x, y) = y + x^2 + 1 = 0$ ,  $f(x, y) = x^2 + y^2$  reaches minimal value at  $P_0 = (0, -1)$ .

The gradients  $\nabla f(x, y)$  and  $\nabla g(x, y)$  at  $P_0$  are

(0, -2), (0, 1)

Note that both  $\nabla f(x, y)$  and  $\nabla g(x, y)$  are orthogonal to the level curve g(x, y) = 0, i.e., they are parallel.



### If $\nabla g(P_0)$ and $\nabla f(P_0)$ are not parallel

This means  $\nabla f(P_0)$  has a non-zero projection **v** to the tangent line.

- Along the direction of v, f(x, y) increases.
- Along the direction of -v, f(x, y) decreases.

This is impossible since  $f(P_0)$  is an extreme point on g(x, y) = 0.



### The Lagrange Multipliers Theorem

Assume that on the curve g(x, y) = 0, f(x, y) has an minimal or maximal value at  $P_0 = (x_0, y_0)$ . If  $P_0$  is **not** an endpoint of the curve and  $\nabla g(x_0, y_0) \neq 0$ , then there exists a critical point  $(x_0, y_0, \lambda_0)$  for the Lagrange function

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

Proof: Since  $\nabla g(x_0, y_0)$  and  $\nabla f(x_0, y_0)$  are parallel, there exists  $\lambda_0 \neq 0$  such that

$$\nabla f(x_0, y_0) - \lambda_0 \nabla g(x_0 - y_0) = 0.$$

Using this, we can easily verify that  $\nabla L(x_0, y_0, \lambda_0) = 0$ .

## The Lagrange Multipliers Method

To find the extreme points of f(x, y) restricted to the curve g(x, y) = 0, we can

• Find the critical points of

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

- Check if these points are maximal or minimal points
- Check if the end points of the curve are maximal or minimal points

This also works for functions with more than two variables.

## An example from before

Determines if f(x, y) = 2 x y have maximal and minimal values for

$$(x, y) \in D = \{(x, y) : x^2 + y^2 \le 4\}$$

and determine where they are.



#### An example from before — with new method

Finding the extreme points on the boundary is equivalent to finding the extreme values of f(x, y) = 2 x y, restricted to the curve  $g(x, y) = x^2 + y^2 - 4 = 0$ .

The corresponding Lagrange function is

$$L(x, y, \lambda) = \lambda (x^{2} + y^{2} - 4) + 2 x y$$

To find the critical points, we need to solve  $\nabla L(x, y, \lambda) = 0$ ,

$$2\lambda x + 2 y = 0$$
  

$$2x + 2\lambda y = 0$$
  

$$x^{2} + y^{2} - 4 = 0$$

The solutions and the corresponding f(x, y) are

| х           | У           | λ  | f(x,y) |
|-------------|-------------|----|--------|
| $-\sqrt{2}$ | $-\sqrt{2}$ | -1 | 4      |
| $-\sqrt{2}$ | $\sqrt{2}$  | 1  | -4     |
| $\sqrt{2}$  | - √2        | 1  | -4     |
| $\sqrt{2}$  | $\sqrt{2}$  | -1 | 4      |

So the function has two maximal points  $(\pm \sqrt{2}, \pm \sqrt{2})$  and two minimal points  $(\mp \sqrt{2}, \pm \sqrt{2})$ .

### Possible exam problem !!

Determine the maximal and minimal value of the function f(x, y) = 3 x y in the domain given by the inequality  $x^2 + x y + y^2 \le 1$ .



#### Solution

Critical points:  $\nabla f = (3 y, 3 x)$  and the only critical the point is (0, 0) and it's a saddle point.

Boundary points: we use the Lagrange multipliers method. We define

$$L(x, y, \lambda) = 3 x y + \lambda (x^{2} + x y + y^{2} - 1)$$

To find the critical points of *L*, we need to solve  $\nabla L(x, y, \lambda) = 0$ , i.e.,

$$\lambda (2 x + y) + 3 y = 0$$
  

$$\lambda (x + 2 y) + 3 x = 0$$
  

$$x^{2} + x y + y^{2} - 1 = 0$$

The solutions and the corresponding f(x, y) are

| x                     | У                     | λ  | f(x,y) |  |
|-----------------------|-----------------------|----|--------|--|
| -1                    | 1                     | 3  | -3     |  |
| 1                     | -1                    | 3  | -3     |  |
| $-\frac{1}{\sqrt{3}}$ | $-\frac{1}{\sqrt{3}}$ | -1 | 1      |  |
| $\frac{1}{\sqrt{3}}$  | $\frac{1}{\sqrt{3}}$  | -1 | 1      |  |

Thus the function has minimal value -3 and maximal value 1.

### Lagrange's multiplier method for more than one constraints

To find extreme values of f(x, y, z) under the constraints g(x, y, z) = 0 and h(x, y, z) = 0, we can similarly look for critical points the Lagrange function

 $L(x, y, z, \lambda, \mu) = f(x, y, z) + \lambda g(x, y, z) + \mu h(x, y, z)$ 

**Example** Determine the maximal and minimal values of the function f(x, y, z) = 2x + yz at the intersection of the plane g(x, y, z) = x + y + z = 0 and the sphere  $h(x, y, z) = x^2 + y^2 + z^2 - 24$ .



#### **Solution**

The corresponding Lagrange function is

 $L(x, \ y, \ z, \ \lambda, \ \mu) = \ 2 \ x \ + \ y \ z + \ \lambda \ (x + \ y + \ z) + \ \mu \left(x^2 + \ y^2 + \ z^2 - 24\right)$ 

To find the critical points of *L*, we have to solve  $\nabla L(x, y, z, \lambda, \mu) = 0$ ,

 $\lambda + 2 \mu x + 2 = 0$  $\lambda + 2 \mu y + z = 0$  $\lambda + y + 2 \mu z = 0$ x + y + z = 0 $x^{2} + y^{2} + z^{2} = 24$ 

The solutions of these equations and the corresponding f(x, y, z) are

| х  | У                                     | Z                                     | λ      | μ              | f(x,y,z) |
|----|---------------------------------------|---------------------------------------|--------|----------------|----------|
| -4 | 2                                     | 2                                     | -2     | 0              | -4       |
| -1 | $\frac{1}{2}\left(1-3\sqrt{5}\right)$ | $\frac{1}{2}\left(1+3\sqrt{5}\right)$ | -1     | <u>1</u><br>2  | -13      |
| -1 | $\frac{1}{2}\left(1+3\sqrt{5}\right)$ | $\frac{1}{2}\left(1-3\sqrt{5}\right)$ | -1     | <u>1</u><br>2  | -13      |
| 4  | -2                                    | -2                                    | 2<br>3 | $-\frac{1}{3}$ | 12       |

So f(x, y, z) has minimal value -13 and maximal value 12 on the curve.

## A building like a box

You are asked to design a building that looks like a box with the condition that the diagonal of the building must



How can you maximize the volume of the building?



## Quiz

Suppose the length of a box has diagonal is 1 meter. What's the maximum volume this box can have? Solution This is equivalent to ask what is the maximum of f(x, y, z) = x y z with the constraint that  $g(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$  and  $x, y, z \ge 0$ .



Find the critical points for the Lagrange function

 $L(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z)$ 

The critical points of  $L(x, y, z, \lambda)$  must satisfy

 $2 \lambda x + yz = 0$   $x z + 2 \lambda y = 0$   $x y + 2 \lambda z = 0$   $x^{2} + y^{2} + z^{2} - 1 = 0$  x > 0 y > 0z > 0

The maximum point of f(x, y, z) must be one of them.

#### Possible exam problem

Find the maximal and minimal value of the function f(x, y, z) = x y + y z + z x in the region *D* in which  $x^2 + y^2 + z^2 \le 1$ .

Hint:

- Find the critical points of f in D and classify them into max./min./saddle points
- Use Lagrange multiplier method to find the extreme values of f(x, y, z) on the curve  $g(x, y, z) = x^2 + y^2 + z^2 1 = 0$ .
- Compare all the local max/min to find the absolute max and min.