Lecture 13 14.1 Double integral 14.2 Iterated integration

Xing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019 Department of Mathematics, Uppsala University, Sweden

What is π

The area of a circle of radius r is π

 $\pi = 3.1415926535897932385 \ldots$

Zu Chongzhi (429–500 AD), Chinese mathematician. He calculated π as between 3.1415926 and 3.1415927, a record which held for **800** years.

One way to compute π

The area under the curve $f(x) = \sqrt{1 - x^2}$ between -1 and 1 is $\frac{\pi}{2}$.

We can approximate it with boxes under the curve.

The narrower the boxes we use, the better the approximation we have.

What is an integral?

We can approximate the area below a curve f(x) between a and b by the Riemann sum

$$\sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

where
$$x_{i-1} \leq x_i^* \leq x_i$$
.

This becomes a better and better approximation when $max(\Delta x_i)$ decreases.

What is an integral?

We define the integral of f(x) over the interval [a, b] as

$$\int_{a}^{b} f(x) dx = \lim \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

where the limit is taken as $\max(\Delta x_i) \rightarrow 0$ and $n \rightarrow \infty$.

This can be seen as the area under f(x) between x = a and x = b.

The fundamental theorem of calculus says if F'(x) = f(x), then

$$\int_{a}^{b} f(x) \, dx = F(a) - F(b)$$

The volume under a surface

The volume under a surface f(x, y) within a rectangle

 $D = \{(x, y) : a \le x \le b, c \le y \le d\}$

can be approximated similarly by the Riemann sum

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i,j}^{*}, y_{i,j}^{*}) \Delta A_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i,j}^{*}, y_{i,j}^{*}) \Delta x_{i} \Delta y_{j}$$

What is a double integral?

We define the double integral of a bounded function f(x, y) in the rectangle D

$$\iint_{D} f(x, y) \, d A = \lim \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i,j}^{*}, y_{i,j}^{*}) \Delta A_{i,j}$$

where the limit is taken when $\max(\Delta x_i, \Delta y_i) \rightarrow 0$.

A function is integrable if this limit exist regardless of how we divide *D* into boxes.

This can be seen as the volume under the surface f(x, y) within D.

Example

Let f(x, y) = x and let $D = \{(x, y) : 0 \le 1 \le x, 0 \le y \le 1\}$. What is

 $\iint_D f(x, y) \, d \!\! I A$

Double integral over more general domains

If f(x, y) is defined on a bounded domain D and R is a rectangle containing R, then we extend f(x, y) to R be defining

Then we define

 $\iint_{D} f(x, y) \, dl \, A = \iint_{R} \hat{f}(x, y) \, dl \, A$

Theorem

If *f* is **continuous** on a **closed**, **bounded** domain *D* whose boundary consists of finitely many curves of finite length, then *f* is integrable on *D*.

Properties of double integral

• $\int \int_D f(x, y) dA = 0$ if D has zero area.

• $\int \int_D 1 \, d A = \text{area of } D$

- The triangle inequality $\left| \iint_{D} f(x, y) dIA \right| \leq \iint_{D} |f(x, y)| dIA$
- If $D = D_1 \cup D_2$, then

 $\iint_{D_1} f(x, y) \, d! \, A + \iint_{D_2} f(x, y) \, d! \, A = \iint_{D} f(x, y) \, d! \, A$

• If $f(x, y) \le g(x, y)$, then $\iint_{D} f(x, y) \, dl \, A \le \iint_{D} g(x, y) \, dl \, A$

How to calculate double integral?

We can calculate a double integral by compute single integral twice. Let

$$A(x) = \int_{c}^{d} f(x, y) \, dy$$

which is the area of the slice at *x*.

Then

$$\iint_{D} f(x, y) \, dl \, A = \int_{a}^{b} A(x) \, dl \, x = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dl \, y \right) dl \, x$$

We can also integrate with respect to *x* first, i.e.,

$$\iint_{D} f(x, y) \, dl \, A = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dl \, x \right) dl \, y$$

Example

If
$$D = \{(x, y) : 1 \le x \le 3, 2 \le y \le 4\}$$
, then

$$\iint_{D} (x + x y) \, d! A = \int_{1}^{3} \left(\int_{2}^{4} (x + x y) \, d! y \right) d! x$$

$$= \int_{1}^{3} \left(x y + \frac{x y^{2}}{2} \right) \Big|_{2}^{4} \, d! x$$

$$= \int_{1}^{3} 8 x \, d! x = 32$$

Quiz

Compute the double integral

$$\iint_{D} x \cos(y) \, d A$$

for $D = \{(x, y) : 2 \le x \le 8, 0 \le y \le \pi/2\}.$

Hint: Compute the following

$$\int_{0}^{\frac{\pi}{2}}\int_{2}^{8}x\cos(y)\,dx\,dy$$

Which is the correct answer?

$$0, \frac{1}{2}, 2, \frac{9}{2}$$

x-simple and y-simple area

A region *D* is y-simple if it can be described as $D = \{(x, y) : a \le x \le b, c(x) \le y \le d(x)\}$ A region *D* is x-simple if it can be described as $D = \{(x, y) : a(y) \le x \le b(y), c \le y \le d\}$

Figure 14.10 A *y*-simple domain

Integrate over *y*-simple area

If *D* is *x*-simple, then

Integrate over *x*-simple area

If *D* is *x*-simple, then

Example

Compute the integral

$$\iint_{D} x y d A$$

when *D* is the blue triangle in the picture.

Solution

 $\iint_{D} x y d A = \int_{0}^{1} \int_{x}^{1} x y d y d x$ $= \int_{0}^{1} x \left(\frac{1}{2} - \frac{x^{2}}{2}\right) d x = \frac{1}{8}$

Quiz

Compute the integral

$$\iint_{D} x y d A$$

when *D* is the blue triangle in the picture.

Hint: Compute

$$\iint_{D} x y d A = \int_{0}^{1} \int_{y}^{2-y} x y d x d y$$

Which one is the correct answer?

$$-\frac{5}{3}, -\frac{2}{3}, \frac{1}{3}, \frac{4}{3}$$