Lecture 13

14.1 Double integral

14.2 Iterated integration

Xing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019
Department of Mathematics, Uppsala University, Sweden

What is π

The area of a circle of radius r is π
$\pi=3.1415926535897932385 \ldots$

Zu Chongzhi (429-500 AD), Chinese mathematician. He calculated π as between 3.1415926 and 3.1415927 , a record which held for $\mathbf{8 0 0}$ years.

One way to compute π

The area under the curve $f(x)=\sqrt{1-x^{2}}$ between -1 and 1 is $\frac{\pi}{2}$.
We can approximate it with boxes under the curve.
The narrower the boxes we use, the better the approximation we have.

What is an integral?

We can approximate the area below a curve $f(x)$ between a and b by the Riemann sum
$\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
where $x_{i-1} \leq x_{i}^{*} \leq x_{i}$.
This becomes a better and better approximation when $\max \left(\Delta x_{i}\right)$ decreases.

What is an integral?

We define the integral of $f(x)$ over the interval $[a, b]$ as

$$
\int_{a}^{p} f(x) d x=\lim \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

where the limit is taken as $\max \left(\Delta \mathrm{x}_{i}\right) \rightarrow 0$ and $n \rightarrow \infty$.
This can be seen as the area under $f(x)$ between $x=a$ and $x=b$.
The fundamental theorem of calculus says if $F^{\prime}(x)=f(x)$, then

$$
\int_{a} f(x) d x=F(a)-F(b)
$$

The volume under a surface

The volume under a surface $f(x, y)$ within a rectangle

$$
D=\{(x, y): a \leq x \leq b, c \leq y \leq d\}
$$

can be approximated similarly by the Riemann sum

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} f\left(\dot{x}_{i, j}^{*}, \dot{y}_{i, j}^{*}\right) \Delta A_{i j}=\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\dot{x}_{i, j}^{*}, \dot{y}_{i, j}^{*}\right) \Delta x_{i} \Delta y_{j}
$$

What is a double integral?

We define the double integral of a bounded function $f(x, y)$ in the rectangle D

$$
\iint_{D} f(x, y) d A=\lim \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i, j}^{*}, y_{i, j}^{*}\right) \Delta A_{i, j}
$$

where the limit is taken when $\max \left(\Delta x_{i}, \Delta y_{i}\right) \rightarrow 0$.
A function is integrable if this limit exist regardless of how we divide D into boxes.
This can be seen as the volume under the surface $f(x, y)$ within D.

Example

Let $f(x, y)=x$ and let $D=\{(x, y): 0 \leq 1 \leq x, 0 \leq y \leq 1\}$. What is
$\iint_{D} f(x, y) d A$

\section*{| n | 10 | 20 | 30 | 40 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Approximated Volume $=0.45$

Double integral over more general domains

If $f(x, y)$ is defined on a bounded domain D and R is a rectangle containing R, then we extend $f(x, y)$ to R be defining
$\hat{f}(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \in \\ 0 & \text { Otherwise }\end{cases}$

Then we define
$\iint_{D} f(x, y) d A=\iint_{R}^{\hat{}} f(x, y) d \| A$
Theorem
If f is continuous on a closed, bounded domain D whose boundary consists of finitely many curves of finite length, then f is integrable on D.

Properties of double integral

- $\iint_{D} f(x, y) d A=0$ if D has zero area.

- $\iint_{D} 1 d A=\operatorname{area}$ of D

- The triangle inequality $\left|\iint_{D} f(x, y) d A\right| \leq \iint_{D}|f(x, y)| d A$
- If $D=D_{1} \cup D_{2}$, then
$\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A=\iint_{D} f(x, y) d A$

- If $f(x, y) \leq g(x, y)$, then
$\iint_{D} f(x, y) d A \leq \iint_{D} g(x, y) d A$

How to calculate double integral?

We can calculate a double integral by compute single integral twice. Let
$A(x)=\int_{c}^{d} f(x, y) d y$
which is the area of the slice at x.

Then
$\iint_{D} f(x, y) d A=\int_{a}^{p} A(x) d x=\int_{a}^{p}\left(\int_{c}^{d} f(x, y) d y\right) d x$
We can also integrate with respect to x first, i.e.,
$\iint_{D} f(x, y) d A=\int_{c}^{d}\left(\int_{a}^{p} f(x, y) d x\right) d y$

Example

$$
\begin{aligned}
& \text { If } D=\{(x, y): 1 \leq x \leq 3,2 \leq y \leq 4\} \text {, then } \\
& \begin{aligned}
\iint_{D}(x & +x y) d A=\int_{1}^{3}\left(\int_{2}^{4}(x+x y) d y\right) d x \\
& =\left.\int_{1}^{3}\left(x y+\frac{x y^{2}}{2}\right)\right|_{2} ^{4} d x \\
& =\int_{1}^{3} 8 x d x=32
\end{aligned}
\end{aligned}
$$

Quiz

Compute the double integral
$\iint_{D} x \cos (y) d A$
for $D=\{(x, y): 2 \leq x \leq 8,0 \leq y \leq \pi / 2\}$.
Hint: Compute the following
$\int_{0}^{\frac{\pi}{2}} \int_{2}^{8} x \cos (y) d x d y$
Which is the correct answer?

$$
0, \frac{1}{2}, 2, \frac{9}{2}
$$

x-simple and y-simple area

A region D is y-simple if it can be described as

$$
D=\{(x, y): a \leq x \leq b, c(x) \leq y \leq d(x)\}
$$

A region D is x-simple if it can be described as

$$
D=\{(x, y): a(y) \leq x \leq b(y), c \leq y \leq d\}
$$

Figure 14.10 A y-simple domain

Figure 14.11 An x-simple domain

Integrate over y-simple area

If D is x-simple, then
$\iint_{D} f(x, y) d A=\int_{a}^{D}\left(\int_{c(x)}^{d(x)} f(x, y) d y\right) d x$

(a)

Integrate over x-simple area

If D is x-simple, then
$\iint_{D} f(x, y) d A=\int_{c}^{d}\left(\int_{a(y)}^{(y)} f(x, y) d x\right) d y$

Example

Compute the integral
$\iint_{D} x y d A$
when D is the blue triangle in the picture.

Solution
$\iint_{D} x y d A=\int_{0}^{1} \int_{x}^{1} x y d y d x$
$=\int_{0}^{1} x\left(\frac{1}{2}-\frac{x^{2}}{2}\right) d x=\frac{1}{8}$

Quiz

Compute the integral
$\iint_{D} x y d A$
when D is the blue triangle in the picture.

Hint: Compute
$\iint_{D} x y d A=\int_{0}^{1} \int_{y}^{2-y} x y d x d y$
Which one is the correct answer?

$$
-\frac{5}{3},-\frac{2}{3}, \frac{1}{3}, \frac{4}{3}
$$

