Lecture 14

14.2 Iterated integration

 14.4 Integral in Polar CoordinatesXing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019
Department of Mathematics, Uppsala University, Sweden

Symmetric area

An area $D \subset \mathbb{R}^{2}$ is symmetric over the x -axis if the following holds: If $(x, y) \in D$, then $(-x, y) \in D$.
An area $D \subset \mathbb{R}^{2}$ is symmetric over the y-axis if the following holds: If $(x, y) \in D$, then $(x,-y) \in D$.

Symmetry and integration

If $f(-x, y)=-f(x, y)$ and D is symmetric over y-axis, then
$\iint_{D} f(x, y) d A=0$
Example
For $D=\left\{(x, y):-\frac{\pi}{2} \leq x \leq \frac{\pi}{2},-\cos (x) \leq y \leq 1+x^{2}\right\}$, we have

$$
\iint_{D} x d A=0
$$

4 | lecture-14.nb

Quiz

Let D be as in the picture. Compute $\iint_{D} \mathbb{e}^{y^{2}} d I$.

It's seems difficult to compute

$$
\int_{0}^{1} \int_{x}^{1} \mathbb{e}^{\mathrm{y}^{2}} d l y d l x
$$

Can you compute this instead?

6 | lecture-14.nb

$$
\int_{0}^{1} \int_{0}^{\mathrm{y}} \boldsymbol{e}^{\mathrm{y}^{2}} \boldsymbol{d} \mathrm{x} d \mathrm{~d} \mathrm{y}
$$

Double integrals in a circle

Let $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. What's the area of
$\iint_{D} 1 d A=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 d y d x=\int_{-1}^{1} 2 \sqrt{1-x^{2}} d x=$??

But we know that the answer is π. How can we make the computation easier?

Domains in polar coordinates

The domain $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ is much easier to describe in polar coordinates as

$$
E=\{(r, \theta): r \leq 1,0 \leq \theta<2 \pi\}
$$

dA in Cartesian coordinates

In Cartesian coordinates, the integral
$\iint_{D} f(x, y) d A=\iint_{D} f(x, y) d x d y$
can be interpreted as "sum" of $f(x, y)$ times $d A$, an infinitesimal area as shown in the picture.

d A in polar coordinates

In polar coordinates, if we want to compute the same "sum", we need to change $d l A$ to
$d A=r d r d \theta$
as shown in the picture.

Switching to polar coordinates

Therefore, we have
$\iint_{D} f(x, y) d x d y=\iint_{E} f(r \cos (\theta), r \sin (\theta)) r d r d \theta$
where D, E describe the same region in Cartesian coordinates and polar coordinates respectively.
Example
Let $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ and $E=\{(r, \theta): r \leq 1,0 \leq \theta<2 \pi\}$. Then
$\iint_{D} 1 d \mathrm{~A}=\iint_{\mathrm{E}} 1 r d r d \theta$
$=\int_{0}^{2 \pi} \int_{0}^{1} 1 r d r d \theta=\int_{0}^{2 \pi} \frac{1}{2} d \theta=\pi$

Integral over half of a circle

Let $D=\left\{(x, y): x^{2}+y^{2} \leq 1, y \geq 0\right\}$ and $E=\{(r, \theta): r \leq 1,0 \leq \theta<\pi\}$.

Then
$\iint_{D}\left(1-x^{2}-y^{2}\right) d A=\iint_{E}\left(1-(r \cos (\theta))^{2}-(r \sin (\theta))^{2}\right) r d r d \theta$
$=\int_{0}^{\pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=\frac{\pi}{4}$

Quiz

Let $D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 2, y \geq 0\right\}$.

Compute
$\iint_{D} y d A$
Which one is the correct answer?

$$
\frac{14}{9}, \frac{28}{9}, \frac{14}{3}, \frac{56}{9}
$$

