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Symmetric area

An area D ⊂ ℝ2  is symmetric over the x-axis if the following holds: If (x, y) ∈ D, then (- x, y) ∈ D .

An area D ⊂ ℝ2  is symmetric over the y-axis if the following holds: If (x, y) ∈ D, then (x, -y) ∈ D .
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Symmetry and integration

If f(-x, y) = -f(x, y) and D is symmetric over y-axis, then


D

f(x, y)ⅆ A = 0
Example

For D = (x, y) : -
π
2
≤ x ≤ π

2
, -cos(x) ≤ y ≤ 1 + x2, we have


D

xⅆ A = 0
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Quiz

Let D be as in the picture. Compute ∫ ∫
D
ⅇ y2 ⅆ A.
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It’s seems difficult to compute


0

1


x

1ⅇy2 ⅆy ⅆx

Can you compute this instead?
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Double integrals in a circle

Let D = (x, y) : x2 + y2 ≤ 1. What’s the area of 


D

1 ⅆA = 
-1

1


- 1-x2

1-x2

1 ⅆ y ⅆx = 
-1

1

2 1 - x2 ⅆx = ??

But we know that the answer is π .  How can we make the computation easier?
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Domains in polar coordinates

The domain D = (x, y) : x2 + y2 ≤ 1 is much easier to describe in polar coordinates as 

E = {(r , θ ) : r ≤ 1 , 0 ≤ θ < 2π}

r<1

E

θ
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ⅆA in Cartesian coordinates

In Cartesian coordinates, the integral


D

f(x, y)ⅆ A = 
D

f(x, y)ⅆ xⅆ y
can be interpreted as “sum” of f(x, y) times ⅆ A, an infinitesimal area as shown in the picture.
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ⅆA in polar coordinates

In polar coordinates, if we want to compute the same “sum”, we need to change ⅆ A to

ⅆ A = rⅆrⅆθ
as shown in the picture.
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Switching to polar coordinates

Therefore, we have


D

f(x, y)ⅆ xⅆ y = 
E

f(r cos(θ ) , r sin(θ )) rⅆrⅆθ
where D, E describe the same region in Cartesian coordinates and polar coordinates respectively.

Example

Let D = (x, y) : x2 + y2 ≤ 1 and E = {(r, θ ) : r ≤ 1, 0 ≤ θ < 2π }. Then


D

1 ⅆA = 
E

1 r ⅆr ⅆθ

= 
0

2 π

0

1

1 r ⅆr ⅆθ = 
0

2 π 1
2

ⅆθ = π
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Integral over half of a circle

Let D = (x, y) : x2 + y2 ≤ 1, y ≥ 0 and E = {(r, θ ) : r ≤ 1, 0 ≤ θ < π }. 

r<1

E

θ
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Then


D

1 - x2 - y2 ⅆ A = 
E

1 - (r cos(θ ))2 - (r sin(θ ))2 rⅆrⅆθ

= 
0

π

0

1 1 - r2 rⅆrⅆθ =
π
4
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Quiz

Let D = (x, y) : 1 ≤ x2 + y2 ≤ 2, y ≥ 0. 
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Compute


D

yⅆ A
Which one is the correct answer?
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