Lecture 15 -
 14.3 Improper Integrals

Xing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019
Department of Mathematics, Uppsala University, Sweden

Improper double integral

So far we have only talked about double integral
$\iint_{D} f(x, y) d d$
of a bounded function $f(x, y)$ on a bounded domain D.
There are two type of integrals we call improper double integrals

- When the function $f(x, y)$ is not bounded
- When the domain D is not bounded.

For $f(x, y) \geq 0$, an improper double integral can either be a finite number (convergence) or infinite (divergence).

Example - unbounded domain

Compute $I=\iint_{D} e^{-x^{2}} d A$, where D is the region where $x \geq 0$ and $-x \leq y \leq x$.

Answer: 1

Example - unbounded function

If D is the region $0 \leq x \leq 1,0 \leq y \leq x^{2}$, compute
$\iint_{D} \frac{1}{(x+y)^{2}} d A$

Answer: $\ln (2)$.

When iterated integral does not work

If $f(x, y)$ can takes both positive and negative values in the integration area, then iterative integrals may have different value.

Example
$\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y y d x=\frac{\pi}{4}$
$\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x d y=-\frac{\pi}{4}$

Summary - improper double integrals

If the function $f(x, y) \geq 0$ (or $f(x, y) \leq 0$), it is enough to do the iterated integrals to compute the improper integral.
If $f(x, y)$ can takes both positive and negative values in the integration area, then iterated single integration does not tell us anything.

For continuous functions,
$\iint_{D}|f(x, y)| d A$ is convergent $\Longrightarrow \iint_{D} f(x, y) d A$ is convergent

Quiz

Let D be the region in which $x \geq 0$ and $y \geq 0$. Calculate the improper integral
$\iint_{D} e^{-x-y} d l A$
The correct answer is

$$
\frac{1}{2}, 1, \frac{3}{2}, 2
$$

The gaussian integral

The following is an important integral call the gaussian integral
$\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
The easiest way to prove this is by computing
$\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2}=\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y$
Computing this integral in polar coordinates gives the result.

Determine convergence

Sometimes there are problems where it's calculate the integral explicitly but can still determine convergence / divergence by comparison with something slightly larger or smaller.

Example
If D is the region as shown in the picture, determine if the double integral
$\iint_{D} \frac{1}{x+y} d A$
converge.

Example - divergent integral

Let D be as in the picture. Show that
$\iint_{D} \frac{1}{x y} d A=\infty$

Example - determine convergence

Let $D=\{(x, y): 0 \leq x \leq 1, x \leq y \leq 1\}$. Does the following integral converge?
$\iint_{D} \frac{1}{x^{3} \sin (x)} d A$
Solution:
Since $\sin (x) \leq x$ for $0 \leq x \leq 1$, we have
$\iint_{D} \frac{1}{x^{3} \sin (x)} d A \geq \iint_{D} \frac{1}{x^{4}} d A=\infty$
So the integral diverges.

A Mean-Value Theorem for double integrals

We define the average of $f(x, y)$ in D by

$$
\bar{f}=\frac{1}{\text { area of } D} \times \iint_{D} f(x, y) d A
$$

If the function $f(x, y)$ is continuous on a closed, bounded, connected set D in the xy-plane, then there exists a point $\left(x_{0}, y_{0}\right) \in D$ such that
$\iint_{D} f(x, y) d A=f\left(x_{0}, y_{0}\right) \times \operatorname{area}$ of D

Calculate the mass and the average density

The triangle with vertices in $(0,0),(1,1)$ and $(2,0)$ is covered with a coating whose density at the point (x, y) is given by $f(x, y)=1+x$ kg per square meter. Calculate the mass of the coating and the average density of the coating.

Solution
Computing the mass is equivalent to computing the integral
$\iint_{D} 1+x d / A$
where D is as shown in the picture.

So the answer is
$\iint_{D} 1+x d A=\int_{0}^{1} \int_{y}^{2-y}(x+1) d x d y=2$
The average density is
$\frac{1}{\text { area of } D} \times \iint_{D} 1+x d A=\frac{2}{2}=1$

Quiz

Compute the average of $\rho(x, y)=x^{2}+y^{2}$ in the unit circle D.
Which is the correct answer?

Hint Compute the following in polar coordinates.
$\frac{1}{\pi} \iint_{D} x^{2}+y^{2} d A=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} r^{3} d r d \theta$
Which is the correct answer?
$\frac{1}{4}, \frac{1}{2}, 1,2$

