Lecture 16

14.5-14.7 Triple Integrals,

Applications

Xing Shi Cai

Several Variable Calculus, 1MA017, Autumn 2019
Department of Mathematics, Uppsala University, Sweden

The calories in a cake

A cake occupies the domain K in 3-dimensional space. The density of calorie in the cake is given by the function $\rho(x, y, z)$. How can we compute the total calories contained in the cake?

What is a triple integral

We define triple integrals with a Riemann sums in a way similar to double integrals
$\iiint_{K} f(x, y, z) d V=\iiint_{K} f(x, y, z) d x d y d z$
$=\lim \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{1} f\left(\dot{x}_{i, j, k}^{*}, \stackrel{y}{y}_{i, j, k}^{*}, \dot{z}_{i, j, k}^{*}\right) \Delta x_{i} \Delta y_{j} \Delta z$
where the limit is taken when $\max \left(\Delta x_{i}, \Delta y_{i}, \Delta z_{k}\right) \rightarrow 0$.

Interpretations of triple integral

Integrating 1 over K gives
Volume of $K=\iiint_{K} 1 d V$
Integrating the density $\rho(x, y, z)$ gives
mass of $K=\iiint_{K} \rho(x, y, z) d V$
The centre of mass of K is given by
$(\bar{x}, \bar{y}, \bar{z})=\frac{1}{\text { mass of } K}\left(\iiint_{B} x \rho d V, \iiint_{B} y \rho d V, \iiint_{B} z \rho d V\right)$

Compute triple integral

Calculation of triple integrals can be done as iterated simple integrals.
Example Compute the triple integral over K in which $1 \leq x \leq 2,-1 \leq y \leq 1$, and $0 \leq z \leq 3$ can be computed as
$\iiint_{K} f(x, y, z) d V=\int_{0}^{3} \int_{-1}^{1} \int_{1}^{2} f(x, y, z) d x d y d z$
Thus the volume of K is

$$
\int_{0}^{3} \int_{-1}^{1} \int_{1}^{2} 1 d x d y y d z=6
$$

When integration domain is not a box

Let T be the tetrahedron shown in the picture. Compute $I=\iiint_{T} f(x, y, z) d V$

Answer:
$\iiint_{T} f(x, y, z) d V=\int_{0}^{1}\left(\iint_{T(x)} f d y d y\right) d x=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} f d y z d y d x$

Quiz

We want to compute the following triple integral over $K=\{0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq 3\}$
$\iiint_{K} x y d V$
Hint Compute the following iterated integral
$\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} x y d z d y d x$

Review: Cylindrical coordinates

To go from cylindrical coordinates to Cartesian coordinates, we use the equations

$$
x=r \cos (\theta), \quad y=r \sin (\theta), z=z
$$

Figure 14.45 The cylindrical coordinates of a point

Integrate in cylindric coordinates

As shown in the picture, when we integrate in cylindric coordinates, we should replace $d x d y d z$ by $r d f d l \theta d l$. Thus
$\iiint_{K} f(x, y, z) d x d y y d z=\iiint_{F} f(r \cos (\theta), r \sin (\theta), z) r d r d \theta \theta d z$

Example

Compute
$\iiint_{K} x^{2}+y^{2}+z d x d y d z$
over K in which $x^{2}+y^{2} \leq 4,0 \leq z \leq 1$

Answer
$\frac{28 \pi}{3}$

Review: Spherical coordinates

To go from spherical coordinates to Cartesian coordinates, we use
$x=R \sin (\phi) \cos (\theta), \quad y=R \sin (\phi) \sin (\theta), \quad z=R \cos (\phi)$.

Figure 14.50 The spherical coordinates of a point

Integrate in spherical coordinates

As shown in the picture, when we integrate in cylindric coordinates, we should replace $d x d y d z$ by $R^{2} \sin (\phi) d l R d \theta d l$. Thus
$\iiint_{K} f(x, y, z) d x d y d z=\iiint_{F} f(R \sin (\phi) \cos (\theta), R \sin (\phi) \sin (\theta), R \cos (\phi)) R^{2} \sin (\phi) d R d \theta d \phi$

Example

Compute
$\iiint_{K} z d x d y d z$
over K in which $x^{2}+y^{2}+z^{2} \leq 4,0 \leq z$

Answer

Quiz

Consider K enclosed between $z=x^{2}+y^{2}$ and $z=1$.

Compute the integral
$\iiint_{K} z d x d y d z$
Hint: In cylindrical coordinates, the integration domain is
$F=\left\{(r, \theta, z): 0 \leq z \leq 1,0<\theta \leq \frac{\pi}{2}, 0 \leq r \leq \sqrt{z}\right\}$
So we only need to compute the following iterative integral

$$
\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{z}} z r \text { dl rdl } \theta d l
$$

