Lecture 17 – Vector Fields

Several Variable Calculus, 1MA017

Xing Shi Cai Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Please watch this video before the lecture: 18

Today we will talk about

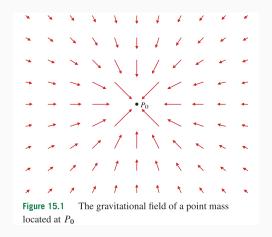
- 15.1 Vector and Scalar Fields
- 15.2 Conservative Fields

Vector fields

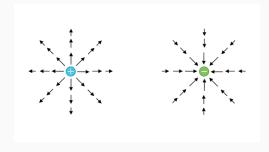
Gravity holds the solar system together

Example of vector field – Gravitational field

Every position around a point mass P_0 gets a gravitational force, which has a direction and magnitude. We call these forces a gravitational field.



An electric field $\mathbf{E}(x, y, z)$ surrounds an electric charge, and exerts force on other charges at (x, y, z), attracting or repelling them.



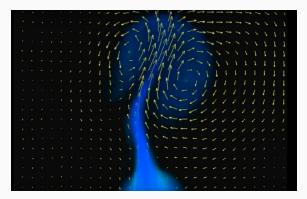
Electric field

An electric field $\mathbf{E}(x, y, z)$ surrounds an electric charge, and exerts force on other charges at (x, y, z), attracting or repelling them.

Electric field around a cat

Example of vector field – Velocity field

A velocity field $\mathbf{v}(x,y,z)$ of a moving fluid is the velocity of the partial at (x,y,z).



Velocity field of fluid

A vector field is simply a function $\mathbf{F}:\mathbb{R}^3\mapsto\mathbb{R}^3.$ We write such a function as

$$\mathbf{F}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)).$$

A vector field is simply a function $\mathbf{F}:\mathbb{R}^3\mapsto\mathbb{R}^3.$ We write such a function as

$$\mathbf{F}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)).$$

This can be seen as if at each point (x, y, z) there is a vector given by $\mathbf{F}(x, y, z)$.

A vector field is simply a function $\mathbf{F}:\mathbb{R}^3\mapsto\mathbb{R}^3.$ We write such a function as

$$\mathbf{F}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)).$$

This can be seen as if at each point (x, y, z) there is a vector given by $\mathbf{F}(x, y, z)$.

We will only talk about smooth vector fields, i.e., the case P,Q,R have partial derivatives of all orders.

A vector field is simply a function $\mathbf{F}:\mathbb{R}^3\mapsto\mathbb{R}^3.$ We write such a function as

$$\mathbf{F}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)).$$

This can be seen as if at each point (x, y, z) there is a vector given by $\mathbf{F}(x, y, z)$.

We will only talk about smooth vector fields, i.e., the case P,Q,R have partial derivatives of all orders.

A planar vector field is simply a function $\mathbf{F}:\mathbb{R}^2\mapsto\mathbb{R}^2.$ We write such a function as

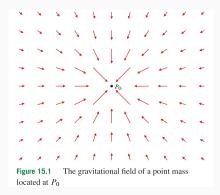
$$\mathbf{F}(x,y)=(P(x,y),Q(x,y))$$

Gravitational field

The gravitational force field due to a point mass m located at position $\left(0,0,0\right)$ is

$$\mathbf{F}(x,y,z) = -\frac{km}{\left|(x,y,z)\right|^3}(x,y,z)$$

where $k \approx 6.674$ is the gravitational constant.



Example of vector field – Rotating solid body

The velocity field of a solid disc rotating around its center with angular velocity $\boldsymbol{\Omega}$ is

 $\mathbf{v}(x,y)=(-\Omega y,\Omega x).$

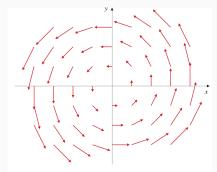
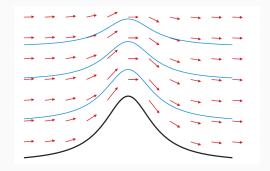


Figure 15.2 The velocity field of a rigid body rotating about the *z*-axis

Field lines

A curve which is tangent to a vector field everywhere is call a field line.

In a velocity field, field lines are trajectories of moving particles.



If a field line can be parametrized as $\mathbf{r}(t)\text{, then}$

 $\mathbf{r}'(t) = \lambda(t) \mathbf{F}(\mathbf{r}(t)),$

for some function $\lambda : \mathbb{R} \mapsto \mathbb{R}$.

If a field line can be parametrized as $\mathbf{r}(t)$, then

 $\mathbf{r}'(t) = \lambda(t) \mathbf{F}(\mathbf{r}(t)),$

for some function $\lambda : \mathbb{R} \mapsto \mathbb{R}$.

For a vector field $\mathbf{F}(x,y,z)=(P,Q,R)\text{, the above implies that}$

$$\frac{\mathrm{d}x}{P(x,y,z)} = \frac{\mathrm{d}y}{Q(x,y,z)} = \frac{\mathrm{d}z}{R(x,y,z)}$$

If a field line can be parametrized as $\mathbf{r}(t)\text{, then}$

 $\mathbf{r}'(t) = \lambda(t) \mathbf{F}(\mathbf{r}(t)),$

for some function $\lambda : \mathbb{R} \mapsto \mathbb{R}$.

For a vector field $\mathbf{F}(x,y,z)=(P,Q,R)\text{, the above implies that}$

$$\frac{\mathrm{d}x}{P(x,y,z)} = \frac{\mathrm{d}y}{Q(x,y,z)} = \frac{\mathrm{d}z}{R(x,y,z)}$$

and for a plane vector field $\mathbf{F}(x,y)=(P,Q)\text{,}$

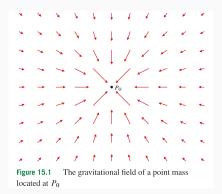
$$\frac{\mathrm{d}x}{P(x,y)} = \frac{\mathrm{d}y}{Q(x,y)}$$

Example

Find the field lines of the gravitational field

$$\mathbf{F}(x,y,z) = -\frac{km}{\left|\left(x,y,z\right)\right|^3}(x,y,z)$$

Answer: Any lines that goes through (0, 0, 0).



Find the field lines of

$$\mathbf{F}(x,y,z)=(xz,2x^2z,x^2)$$

Answer: $y = x^2 + C_1$ and $y = z^2 + C_2$.

Quiz – rotating solid body

Find the field lines of $\mathbf{H}(x,y)=(-\Omega y,\Omega x),$ where Ω is a constant.

Hint: Solve the equation that

$$\frac{\mathrm{d}x}{-\Omega y} = \frac{\mathrm{d}y}{\Omega x}$$

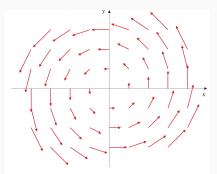


Figure 15.2 The velocity field of a rigid body rotating about the *z*-axis

Conservative vector fields

If there is a function $\varphi : \mathbb{R}^3 \mapsto \mathbb{R}$ such that $\nabla \varphi = \mathbf{F}$, then \mathbf{F} is a conservative vector field. φ is a potential for \mathbf{F} .

If there is a function $\varphi : \mathbb{R}^3 \mapsto \mathbb{R}$ such that $\nabla \varphi = \mathbf{F}$, then \mathbf{F} is a conservative vector field. φ is a potential for \mathbf{F} .

Example

Let $\varphi(x,y) = \arctan(xy)$. Let

$$\mathbf{F}(x,y) = \left(\frac{y}{x^2y^2 + 1}, \frac{x}{x^2y^2 + 1}\right).$$

Is $\varphi(x,y)$ the potential of ${f F}$?

If there is a function $\varphi : \mathbb{R}^3 \mapsto \mathbb{R}$ such that $\nabla \varphi = \mathbf{F}$, then \mathbf{F} is a conservative vector field. φ is a potential for \mathbf{F} .

Example

Let $\varphi(x,y) = \arctan(xy)$. Let

$$\mathbf{F}(x,y) = \left(\frac{y}{x^2y^2 + 1}, \frac{x}{x^2y^2 + 1}\right).$$

Is $\varphi(x,y)$ the potential of ${f F}$?

Answer: Yes.

Let

$$\varphi(x,y,z) = \frac{km}{|(x,y,z)|}.$$

Then

$$\nabla \varphi(x,y,z) = \mathbf{F}(x,y,z) = -\frac{km}{\left|(x,y,z)\right|^3}(x,y,z).$$

Thus the vector field ${\bf F}$ is conservative.

If a vector field $\mathbf{F}(x,y,z)=(P,Q,R)$ is conservative, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \qquad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \qquad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

If a vector field $\mathbf{F}(x,y,z)=(P,Q,R)$ is conservative, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \qquad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \qquad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

If a planar vector field $\mathbf{F}(x,y)=(P,Q)$ is conservative, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

If a vector field $\mathbf{F}(x,y,z)=(P,Q,R)$ is conservative, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \qquad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \qquad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

If a planar vector field $\mathbf{F}(x,y)=(P,Q)$ is conservative, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Example

Show that the velocity field $\mathbf{v}(x,y)=(-\Omega y,\Omega x)$ is not conservative.

Is the following vector field conservative?

$$\mathbf{F}(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

Answer: No.

What is potential function of the vector field $\mathbf{F}(x,y) = (x,-y)$?

What is potential function of the vector field $\mathbf{F}(x,y) = (x,-y)$? Answer: The potential function is of the form

$$\varphi(x,y)=\frac{x^2-y^2}{2}+C_2$$

since

$$\nabla \varphi(x,y) = \left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial x}\right) = (x,-y) = \mathbf{F}.$$

$$\mathbf{F}(x,y,z)=(x,-2y,3z).$$

$$\mathbf{F}(x,y,z)=(x,-2y,3z).$$

Hint: The potential function φ satisfies

$$\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right) = (x, -2y, 3z)$$

$$\mathbf{F}(x,y,z)=(x,-2y,3z).$$

Hint: The potential function φ satisfies

$$\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right) = (x, -2y, 3z)$$

Thus

$$\varphi(x, y, z) = \int x \mathrm{d}x = \frac{x^2}{2} + C_2(y, z).$$

$$\mathbf{F}(x,y,z)=(x,-2y,3z).$$

Hint: The potential function φ satisfies

$$\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right) = (x, -2y, 3z)$$

Thus

$$\varphi(x, y, z) = \int x \mathrm{d}x = \frac{x^2}{2} + C_2(y, z).$$

Then use

$$\frac{\partial \varphi}{\partial y} = \frac{\partial C_2(y,z)}{\partial y} = -2y$$

to get

$$C_2(y,z)=\int -2y\mathrm{d}y=-y^2+C_1(z)$$

$$\mathbf{F}(x,y,z)=(x,-2y,3z).$$

Hint: The potential function φ satisfies

$$\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right) = (x, -2y, 3z)$$

Thus

$$\varphi(x,y,z) = \int x \mathrm{d}x = \frac{x^2}{2} + C_2(y,z).$$

Then use

$$\frac{\partial \varphi}{\partial y} = \frac{\partial C_2(y,z)}{\partial y} = -2y$$

to get

$$C_2(y,z)=\int -2y\mathrm{d}y=-y^2+C_1(z)$$

What is $C_1(z)$??

Equipotential surfaces and equipotential curves

Equipotential surfaces

If $\varphi(x, y, z)$ is the potential function of $\mathbf{F}(x, y, z)$, then the level surfaces $\varphi(x, y, z) = C$ are called equipotential surfaces of \mathbf{F} .

Equipotential surfaces

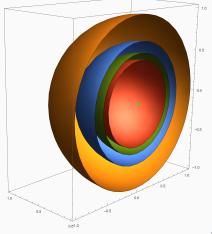
If $\varphi(x, y, z)$ is the potential function of $\mathbf{F}(x, y, z)$, then the level surfaces $\varphi(x, y, z) = C$ are called equipotential surfaces of \mathbf{F} .

Example

Since the potential function of the gravitational field is

$$\varphi(x,y,z)=\frac{km}{|(x,y,z)|},$$

the equipotential surfaces are spheres with center at (0, 0, 0).



If $\varphi(x,y)$ is a potential function of $\mathbf{F}(x,y)$, then the level curves $\varphi(x,y) = C$ are called equipotential curves of \mathbf{F} .

If $\varphi(x,y)$ is a potential function of $\mathbf{F}(x,y)$, then the level curves $\varphi(x,y) = C$ are called equipotential curves of \mathbf{F} .

Example

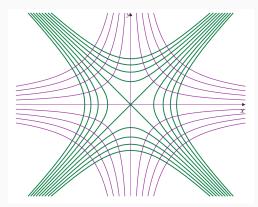
Since a potential function of $\mathbf{F}(x,y)=(x,-y)$ is

$$\varphi(x,y)=\frac{x^2-y^2}{2}$$

the equipotential curves are of the form $\frac{x^2-y^2}{2} = C$.

Equipotential curves

If $\varphi(x,y)$ is a potential function of $\mathbf{F}(x,y)$, then the level curves $\varphi(x,y) = C$ are called equipotential curves of \mathbf{F} .



The equipotential curves (violet) and field lines (green) of ${\bf F}=(x,-y)$

Equipotential curves and field lines intersect at right angel.
21