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Summary

Please watch this video before the lecture: 18

Today we will talk about

• 15.1 Vector and Scalar Fields
• 15.2 Conservative Fields
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https://www.youtube.com/watch?v=9mNOgdRUjh4


Vector fields



Gravity holds the solar system together
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Example of vector field – Gravitational field

Every position around a point mass 𝑃0 gets a gravitational force,
which has a direction and magnitude. We call these forces a
gravitational field.
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Example of vector field – Electric field

An electric field E(𝑥, 𝑦, 𝑧) surrounds an electric charge, and exerts
force on other charges at (𝑥, 𝑦, 𝑧), attracting or repelling them.

Electric field
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Example of vector field – Electric field

An electric field E(𝑥, 𝑦, 𝑧) surrounds an electric charge, and exerts
force on other charges at (𝑥, 𝑦, 𝑧), attracting or repelling them.

Electric field around a cat
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Example of vector field – Velocity field

A velocity field v(𝑥, 𝑦, 𝑧) of a moving fluid is the velocity of the
partial at (𝑥, 𝑦, 𝑧).

Velocity field of fluid
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What is a vector field

A vector field is simply a function F ∶ ℝ3 ↦ ℝ3. We write such a
function as

F(𝑥, 𝑦, 𝑧) = (𝑃 (𝑥, 𝑦, 𝑧), 𝑄(𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧)).

This can be seen as if at each point (𝑥, 𝑦, 𝑧) there is a vector given
by F(𝑥, 𝑦, 𝑧).
We will only talk about smooth vector fields, i.e., the case 𝑃 , 𝑄, 𝑅
have partial derivatives of all orders.

A planar vector field is simply a function F ∶ ℝ2 ↦ ℝ2. We write
such a function as

F(𝑥, 𝑦) = (𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦))
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Gravitational field

The gravitational force field due to a point mass 𝑚 located at
position (0, 0, 0) is

F(𝑥, 𝑦, 𝑧) = − 𝑘𝑚
|(𝑥, 𝑦, 𝑧)|3

(𝑥, 𝑦, 𝑧)

where 𝑘 ≈ 6.674 is the gravitational constant.
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Example of vector field – Rotating solid body

The velocity field of a solid disc rotating around its center with
angular velocity Ω is

v(𝑥, 𝑦) = (−Ω𝑦, Ω𝑥).
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Field lines



Field lines

A curve which is tangent to a vector field everywhere is call a field
line.

In a velocity field, field lines are trajectories of moving particles.
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Finding field lines

If a field line can be parametrized as r(𝑡), then

r′(𝑡) = 𝜆(𝑡)F(r(𝑡)),

for some function 𝜆 ∶ ℝ ↦ ℝ.

For a vector field F(𝑥, 𝑦, 𝑧) = (𝑃 , 𝑄, 𝑅), the above implies that

d𝑥
𝑃(𝑥, 𝑦, 𝑧) = d𝑦

𝑄(𝑥, 𝑦, 𝑧) = d𝑧
𝑅(𝑥, 𝑦, 𝑧)

and for a plane vector field F(𝑥, 𝑦) = (𝑃 , 𝑄),

d𝑥
𝑃(𝑥, 𝑦) = d𝑦

𝑄(𝑥, 𝑦)
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Example

Find the field lines of the gravitational field

F(𝑥, 𝑦, 𝑧) = − 𝑘𝑚
|(𝑥, 𝑦, 𝑧)|3

(𝑥, 𝑦, 𝑧)

Answer: Any lines that goes through (0, 0, 0).
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Example

Find the field lines of

F(𝑥, 𝑦, 𝑧) = (𝑥𝑧, 2𝑥2𝑧, 𝑥2)

Answer: 𝑦 = 𝑥2 + 𝐶1 and 𝑦 = 𝑧2 + 𝐶2.
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Quiz – rotating solid body

Find the field lines of H(𝑥, 𝑦) = (−Ω𝑦, Ω𝑥), where Ω is a constant.

Hint: Solve the equation that
d𝑥

−Ω𝑦 = d𝑦
Ω𝑥
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Conservative vector fields



Conservative vector field

If there is a function 𝜑 ∶ ℝ3 ↦ ℝ such that ∇𝜑 = F, then F is a
conservative vector field. 𝜑 is a potential for F.

Example
Let 𝜑(𝑥, 𝑦) = arctan(𝑥𝑦). Let

F(𝑥, 𝑦) = ( 𝑦
𝑥2𝑦2 + 1, 𝑥

𝑥2𝑦2 + 1) .

Is 𝜑(𝑥, 𝑦) the potential of F?

Answer: Yes.
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The gravitational filed is conservative

Let
𝜑(𝑥, 𝑦, 𝑧) = 𝑘𝑚

|(𝑥, 𝑦, 𝑧)| .

Then

∇𝜑(𝑥, 𝑦, 𝑧) = F(𝑥, 𝑦, 𝑧) = − 𝑘𝑚
|(𝑥, 𝑦, 𝑧)|3

(𝑥, 𝑦, 𝑧).

Thus the vector field F is conservative.
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Necessary condition for conservative field

If a vector field F(𝑥, 𝑦, 𝑧) = (𝑃 , 𝑄, 𝑅) is conservative, then

𝜕𝑃
𝜕𝑦 = 𝜕𝑄

𝜕𝑥 , 𝜕𝑃
𝜕𝑧 = 𝜕𝑅

𝜕𝑥 , 𝜕𝑄
𝜕𝑧 = 𝜕𝑅

𝜕𝑦

If a planar vector field F(𝑥, 𝑦) = (𝑃 , 𝑄) is conservative, then

𝜕𝑃
𝜕𝑦 = 𝜕𝑄

𝜕𝑥 .

Example
Show that the velocity field v(𝑥, 𝑦) = (−Ω𝑦, Ω𝑥) is not
conservative.
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Example

Is the following vector field conservative?

F(𝑥, 𝑦) = ( 𝑥
𝑥2 + 𝑦2 , −𝑦

𝑥2 + 𝑦2 )

Answer: No.
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Example – Finding the potential function

What is potential function of the vector field F(𝑥, 𝑦) = (𝑥, −𝑦)?

Answer: The potential function is of the form

𝜑(𝑥, 𝑦) = 𝑥2 − 𝑦2

2 + 𝐶2

since
∇𝜑(𝑥, 𝑦) = (𝜕𝜑

𝜕𝑥 , 𝜕𝜑
𝜕𝑥 ) = (𝑥, −𝑦) = F.
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Quiz

Find the potential function of the conservative field

F(𝑥, 𝑦, 𝑧) = (𝑥, −2𝑦, 3𝑧).

Hint: The potential function 𝜑 satisfies

(𝜕𝜑
𝜕𝑥 , 𝜕𝜑

𝜕𝑦 , 𝜕𝜑
𝜕𝑧 ) = (𝑥, −2𝑦, 3𝑧)

Thus
𝜑(𝑥, 𝑦, 𝑧) = ∫ 𝑥d𝑥 = 𝑥2

2 + 𝐶2(𝑦, 𝑧).
Then use

𝜕𝜑
𝜕𝑦 = 𝜕𝐶2(𝑦, 𝑧)

𝜕𝑦 = −2𝑦
to get

𝐶2(𝑦, 𝑧) = ∫ −2𝑦d𝑦 = −𝑦2 + 𝐶1(𝑧)

What is 𝐶1(𝑧)??
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Equipotential surfaces and
equipotential curves



Equipotential surfaces

If 𝜑(𝑥, 𝑦, 𝑧) is the potential function of F(𝑥, 𝑦, 𝑧), then the level
surfaces 𝜑(𝑥, 𝑦, 𝑧) = 𝐶 are called equipotential surfaces of F.

Example
Since the potential function of
the gravitational field is

𝜑(𝑥, 𝑦, 𝑧) = 𝑘𝑚
|(𝑥, 𝑦, 𝑧)| ,

the equipotential surfaces are
spheres with center at (0, 0, 0).
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Equipotential curves

If 𝜑(𝑥, 𝑦) is a potential function of F(𝑥, 𝑦), then the level curves
𝜑(𝑥, 𝑦) = 𝐶 are called equipotential curves of F.
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If 𝜑(𝑥, 𝑦) is a potential function of F(𝑥, 𝑦), then the level curves
𝜑(𝑥, 𝑦) = 𝐶 are called equipotential curves of F.

Example
Since a potential function of F(𝑥, 𝑦) = (𝑥, −𝑦) is

𝜑(𝑥, 𝑦) = 𝑥2 − 𝑦2

2

the equipotential curves are of the form 𝑥2−𝑦2

2 = 𝐶.
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Equipotential curves

If 𝜑(𝑥, 𝑦) is a potential function of F(𝑥, 𝑦), then the level curves
𝜑(𝑥, 𝑦) = 𝐶 are called equipotential curves of F.

The equipotential curves (violet) and field lines (green) of F = (𝑥, −𝑦)

😲Equipotential curves and field lines intersect at right angel. 21
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