Lecture 17 - Vector Fields

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019
Department of Mathematics, Uppsala University, Sweden

Summary

Please watch this video before the lecture: 18
Today we will talk about

- 15.1 Vector and Scalar Fields
- 15.2 Conservative Fields

Vector fields

Gravity holds the solar system together

Example of vector field - Gravitational field

Every position around a point mass P_{0} gets a gravitational force, which has a direction and magnitude. We call these forces a gravitational field.

Figure 15.1 The gravitational field of a point mass located at P_{0}

Example of vector field - Electric field

An electric field $\mathbf{E}(x, y, z)$ surrounds an electric charge, and exerts force on other charges at (x, y, z), attracting or repelling them.

Electric field

Example of vector field - Electric field

An electric field $\mathbf{E}(x, y, z)$ surrounds an electric charge, and exerts force on other charges at (x, y, z), attracting or repelling them.

Electric field around a cat

Example of vector field - Velocity field

A velocity field $\mathbf{v}(x, y, z)$ of a moving fluid is the velocity of the partial at (x, y, z).

Velocity field of fluid

What is a vector field

A vector field is simply a function $\mathbf{F}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$. We write such a function as

$$
\mathbf{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))
$$

What is a vector field

A vector field is simply a function $\mathbf{F}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$. We write such a function as

$$
\mathbf{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))
$$

This can be seen as if at each point (x, y, z) there is a vector given by $\mathbf{F}(x, y, z)$.

What is a vector field

A vector field is simply a function $\mathbf{F}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$. We write such a function as

$$
\mathbf{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))
$$

This can be seen as if at each point (x, y, z) there is a vector given by $\mathbf{F}(x, y, z)$.

We will only talk about smooth vector fields, i.e., the case P, Q, R have partial derivatives of all orders.

What is a vector field

A vector field is simply a function $\mathbf{F}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$. We write such a function as

$$
\mathbf{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))
$$

This can be seen as if at each point (x, y, z) there is a vector given by $\mathbf{F}(x, y, z)$.

We will only talk about smooth vector fields, i.e., the case P, Q, R have partial derivatives of all orders.

A planar vector field is simply a function $\mathbf{F}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$. We write such a function as

$$
\mathbf{F}(x, y)=(P(x, y), Q(x, y))
$$

Gravitational field

The gravitational force field due to a point mass m located at position $(0,0,0)$ is

$$
\mathbf{F}(x, y, z)=-\frac{k m}{|(x, y, z)|^{3}}(x, y, z)
$$

where $k \approx 6.674$ is the gravitational constant.

Figure 15.1 The gravitational field of a point mass located at P_{0}

Example of vector field - Rotating solid body

The velocity field of a solid disc rotating around its center with angular velocity Ω is

$$
\mathbf{v}(x, y)=(-\Omega y, \Omega x)
$$

Figure 15.2 The velocity field of a rigid body rotating about the z-axis

Field lines

Field lines

A curve which is tangent to a vector field everywhere is call a field line.

In a velocity field, field lines are trajectories of moving particles.

Finding field lines

If a field line can be parametrized as $\mathbf{r}(t)$, then

$$
\mathbf{r}^{\prime}(t)=\lambda(t) \mathbf{F}(\mathbf{r}(t)),
$$

for some function $\lambda: \mathbb{R} \mapsto \mathbb{R}$.

Finding field lines

If a field line can be parametrized as $\mathbf{r}(t)$, then

$$
\mathbf{r}^{\prime}(t)=\lambda(t) \mathbf{F}(\mathbf{r}(t)),
$$

for some function $\lambda: \mathbb{R} \mapsto \mathbb{R}$.
For a vector field $\mathbf{F}(x, y, z)=(P, Q, R)$, the above implies that

$$
\frac{\mathrm{d} x}{P(x, y, z)}=\frac{\mathrm{d} y}{Q(x, y, z)}=\frac{\mathrm{d} z}{R(x, y, z)}
$$

Finding field lines

If a field line can be parametrized as $\mathbf{r}(t)$, then

$$
\mathbf{r}^{\prime}(t)=\lambda(t) \mathbf{F}(\mathbf{r}(t)),
$$

for some function $\lambda: \mathbb{R} \mapsto \mathbb{R}$.
For a vector field $\mathbf{F}(x, y, z)=(P, Q, R)$, the above implies that

$$
\frac{\mathrm{d} x}{P(x, y, z)}=\frac{\mathrm{d} y}{Q(x, y, z)}=\frac{\mathrm{d} z}{R(x, y, z)}
$$

and for a plane vector field $\mathbf{F}(x, y)=(P, Q)$,

$$
\frac{\mathrm{d} x}{P(x, y)}=\frac{\mathrm{d} y}{Q(x, y)}
$$

Example

Find the field lines of the gravitational field

$$
\mathbf{F}(x, y, z)=-\frac{k m}{|(x, y, z)|^{3}}(x, y, z)
$$

Answer: Any lines that goes through $(0,0,0)$.

Figure 15.1 The gravitational field of a point mass located at P_{0}

Example

Find the field lines of

$$
\mathbf{F}(x, y, z)=\left(x z, 2 x^{2} z, x^{2}\right)
$$

Answer: $y=x^{2}+C_{1}$ and $y=z^{2}+C_{2}$.

Quiz - rotating solid body

Find the field lines of $\mathbf{H}(x, y)=(-\Omega y, \Omega x)$, where Ω is a constant.
Hint: Solve the equation that

$$
\frac{\mathrm{d} x}{-\Omega y}=\frac{\mathrm{d} y}{\Omega x}
$$

Figure 15.2 The velocity field of a rigid body rotating

Conservative vector fields

Conservative vector field

If there is a function $\varphi: \mathbb{R}^{3} \mapsto \mathbb{R}$ such that $\nabla \varphi=\mathbf{F}$, then \mathbf{F} is a conservative vector field. φ is a potential for \mathbf{F}.

Conservative vector field

If there is a function $\varphi: \mathbb{R}^{3} \mapsto \mathbb{R}$ such that $\nabla \varphi=\mathbf{F}$, then \mathbf{F} is a conservative vector field. φ is a potential for \mathbf{F}.

Example

Let $\varphi(x, y)=\arctan (x y)$. Let

$$
\mathbf{F}(x, y)=\left(\frac{y}{x^{2} y^{2}+1}, \frac{x}{x^{2} y^{2}+1}\right) .
$$

Is $\varphi(x, y)$ the potential of \mathbf{F} ?

Conservative vector field

If there is a function $\varphi: \mathbb{R}^{3} \mapsto \mathbb{R}$ such that $\nabla \varphi=\mathbf{F}$, then \mathbf{F} is a conservative vector field. φ is a potential for \mathbf{F}.

Example

Let $\varphi(x, y)=\arctan (x y)$. Let

$$
\mathbf{F}(x, y)=\left(\frac{y}{x^{2} y^{2}+1}, \frac{x}{x^{2} y^{2}+1}\right) .
$$

Is $\varphi(x, y)$ the potential of \mathbf{F} ?

Answer: Yes.

The gravitational filed is conservative

Let

$$
\varphi(x, y, z)=\frac{k m}{|(x, y, z)|}
$$

Then

$$
\nabla \varphi(x, y, z)=\mathbf{F}(x, y, z)=-\frac{k m}{|(x, y, z)|^{3}}(x, y, z)
$$

Thus the vector field \mathbf{F} is conservative.

Necessary condition for conservative field

If a vector field $\mathbf{F}(x, y, z)=(P, Q, R)$ is conservative, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

Necessary condition for conservative field

If a vector field $\mathbf{F}(x, y, z)=(P, Q, R)$ is conservative, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

If a planar vector field $\mathbf{F}(x, y)=(P, Q)$ is conservative, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Necessary condition for conservative field

If a vector field $\mathbf{F}(x, y, z)=(P, Q, R)$ is conservative, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

If a planar vector field $\mathbf{F}(x, y)=(P, Q)$ is conservative, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Example

Show that the velocity field $\mathbf{v}(x, y)=(-\Omega y, \Omega x)$ is not conservative.

Example

Is the following vector field conservative?

$$
\mathbf{F}(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{-y}{x^{2}+y^{2}}\right)
$$

Answer: No.

Example - Finding the potential function

What is potential function of the vector field $\mathbf{F}(x, y)=(x,-y)$?

Example - Finding the potential function

What is potential function of the vector field $\mathbf{F}(x, y)=(x,-y)$?
Answer: The potential function is of the form

$$
\varphi(x, y)=\frac{x^{2}-y^{2}}{2}+C_{2}
$$

since

$$
\nabla \varphi(x, y)=\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial x}\right)=(x,-y)=\mathbf{F} .
$$

Quiz

Find the potential function of the conservative field

$$
\mathbf{F}(x, y, z)=(x,-2 y, 3 z)
$$

Quiz

Find the potential function of the conservative field

$$
\mathbf{F}(x, y, z)=(x,-2 y, 3 z)
$$

Hint: The potential function φ satisfies

$$
\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)=(x,-2 y, 3 z)
$$

Quiz

Find the potential function of the conservative field

$$
\mathbf{F}(x, y, z)=(x,-2 y, 3 z) .
$$

Hint: The potential function φ satisfies

$$
\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)=(x,-2 y, 3 z)
$$

Thus

$$
\varphi(x, y, z)=\int x \mathrm{~d} x=\frac{x^{2}}{2}+C_{2}(y, z)
$$

Quiz

Find the potential function of the conservative field

$$
\mathbf{F}(x, y, z)=(x,-2 y, 3 z)
$$

Hint: The potential function φ satisfies

$$
\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)=(x,-2 y, 3 z)
$$

Thus

$$
\varphi(x, y, z)=\int x \mathrm{~d} x=\frac{x^{2}}{2}+C_{2}(y, z)
$$

Then use

$$
\frac{\partial \varphi}{\partial y}=\frac{\partial C_{2}(y, z)}{\partial y}=-2 y
$$

to get

$$
C_{2}(y, z)=\int-2 y \mathrm{~d} y=-y^{2}+C_{1}(z)
$$

Quiz

Find the potential function of the conservative field

$$
\mathbf{F}(x, y, z)=(x,-2 y, 3 z)
$$

Hint: The potential function φ satisfies

$$
\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)=(x,-2 y, 3 z)
$$

Thus

$$
\varphi(x, y, z)=\int x \mathrm{~d} x=\frac{x^{2}}{2}+C_{2}(y, z)
$$

Then use

$$
\frac{\partial \varphi}{\partial y}=\frac{\partial C_{2}(y, z)}{\partial y}=-2 y
$$

to get

$$
C_{2}(y, z)=\int-2 y \mathrm{~d} y=-y^{2}+C_{1}(z)
$$

What is $C_{1}(z) ? ?$

Equipotential surfaces and equipotential curves

Equipotential surfaces

If $\varphi(x, y, z)$ is the potential function of $\mathbf{F}(x, y, z)$, then the level surfaces $\varphi(x, y, z)=C$ are called equipotential surfaces of \mathbf{F}.

Equipotential surfaces

If $\varphi(x, y, z)$ is the potential function of $\mathbf{F}(x, y, z)$, then the level surfaces $\varphi(x, y, z)=C$ are called equipotential surfaces of \mathbf{F}.

Example

Since the potential function of the gravitational field is

$$
\varphi(x, y, z)=\frac{k m}{|(x, y, z)|}
$$

the equipotential surfaces are spheres with center at $(0,0,0)$.

Equipotential curves

If $\varphi(x, y)$ is a potential function of $\mathbf{F}(x, y)$, then the level curves $\varphi(x, y)=C$ are called equipotential curves of \mathbf{F}.

Equipotential curves

If $\varphi(x, y)$ is a potential function of $\mathbf{F}(x, y)$, then the level curves $\varphi(x, y)=C$ are called equipotential curves of \mathbf{F}.

Example

Since a potential function of $\mathbf{F}(x, y)=(x,-y)$ is

$$
\varphi(x, y)=\frac{x^{2}-y^{2}}{2}
$$

the equipotential curves are of the form $\frac{x^{2}-y^{2}}{2}=C$.

Equipotential curves

If $\varphi(x, y)$ is a potential function of $\mathbf{F}(x, y)$, then the level curves $\varphi(x, y)=C$ are called equipotential curves of \mathbf{F}.

The equipotential curves (violet) and field lines (green) of $\mathbf{F}=(x,-y)$
(2)Equipotential curves and field lines intersect at right angel.

