Lecture 18 - Line Integral

Several Variable Calculus, 1MA017

Xing Shi Cai
Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Summary

Please watch this video before the lecture: 19
Today we will talk about

- 15.3 Line Integrals
- 15.4 Line Integrals of Vector Fields

Line integrals

The problem

We are given a function $f(x, y)$ and a smooth curve \mathcal{C}. How can we compute the area under $f(x, y)$ along this curve \mathcal{C} ?

Review: The arc-length of a curve

Then the length of the curve \mathcal{C} is approximately

$$
\sum_{i=1}^{n}\left|\Delta \mathbf{r}_{i}\right|
$$

A curve with parametrization $r(t), t \in[a, b]$

Review: The arc-length of a curve

Then the length of the curve \mathcal{C} is approximately

$$
\sum_{i=1}^{n}\left|\Delta \mathbf{r}_{i}\right|
$$

Thus the length of the arc is defined as the

$$
\lim \sum_{i=1}^{n}\left|\Delta \mathbf{r}_{i}\right|=\lim \sum_{i=1}^{n}\left|\frac{\Delta \mathbf{r}_{i}}{\Delta t_{i}}\right| \Delta t_{i}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t
$$

where the limit is taken as $\max \Delta t_{i} \rightarrow 0$.

Line integral

Similarly, the area under f along the curve is approximately

$$
\sum_{i=1}^{n} f\left(\mathbf{r}_{i}^{*}\right)\left|\Delta \mathbf{r}_{i}\right|
$$

Line integral

Similarly, the area under f along the curve is approximately

$$
\sum_{i=1}^{n} f\left(\mathbf{r}_{i}^{*}\right)\left|\Delta \mathbf{r}_{i}\right|
$$

Thus we define the line integral of f along \mathcal{C} as

$$
\begin{aligned}
\int_{\mathcal{C}} f \mathrm{~d} s & =\lim \sum_{i=1}^{n} f\left(\mathbf{r}_{i}^{*}\right)\left|\Delta \mathbf{r}_{i}\right| \\
& =\lim \sum_{i=1}^{n} f\left(\mathbf{r}_{i}^{*}\right)\left|\frac{\Delta \mathbf{r}_{i}}{\Delta t_{i}}\right| \Delta t_{i} \\
& =\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t
\end{aligned}
$$

as $\max \Delta t_{i} \rightarrow 0$.

Interpretation of line integral

The line integral $\int_{\mathcal{C}} f \mathrm{~d} s$ can be seen as the area under f along \mathcal{C}.

Interpretation of line integral

The line integral $\int_{\mathcal{C}} f \mathrm{~d} s$ can be seen as the area under f along \mathcal{C}.

If $f(\mathbf{r}(t))=1$, then

$$
\int_{\mathcal{C}} f \mathrm{~d} s=\int_{\mathcal{C}} 1 \mathrm{~d} s=\text { the length of } \mathcal{C} .
$$

Interpretation of line integral

The line integral $\int_{\mathcal{C}} f \mathrm{~d} s$ can be seen as the area under f along \mathcal{C}.

If $f(\mathbf{r}(t))=1$, then

$$
\int_{\mathcal{C}} f \mathrm{~d} s=\int_{\mathcal{C}} 1 \mathrm{~d} s=\text { the length of } \mathcal{C} .
$$

If $f(\mathbf{r}(t))$ is the density of the curve, then

$$
\int_{\mathcal{C}} f \mathrm{~d} s=\text { the mass of } \mathcal{C} .
$$

Example - circle

Let \mathcal{C} be the upper half of the unit circle. Show that

$$
I=\int_{\mathcal{C}} y \mathrm{~d} s=2
$$

Example - circle

Let \mathcal{C} be the upper half of the unit circle. Show that

$$
I=\int_{\mathcal{C}} y \mathrm{~d} s=2
$$

Solution: We can parametrize \mathcal{C} by $\mathbf{r}(t)=(\cos (t), \sin (t)), 0 \leq t \leq$ π. Then

$$
\left|\mathbf{r}^{\prime}(t)\right|=|(-\sin (t), \cos (t))|=1
$$

Thus

$$
I=\int_{0}^{\pi} f(\mathbf{r}(t)) \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{0}^{\pi} \cos (t) \times 1 \mathrm{~d} t=2
$$

Example - Straight line

Let \mathcal{C} be the line from the origin to $(2,1)$. Compute

$$
I=\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) \mathrm{d} s
$$

Example - Straight line

Let \mathcal{C} be the line from the origin to $(2,1)$. Compute

$$
I=\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) \mathrm{d} s
$$

Solution: We can parametrize \mathcal{C} by $\mathbf{r}(t)=(2 t, t), t \in[0,1]$. Then

$$
\left|\mathbf{r}^{\prime}(t)\right|=|(2,1)|=\sqrt{5}
$$

Thus

$$
I=\int_{0}^{\pi} f(\mathbf{r}(t)) \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{0}^{1}\left(4 t^{2}+t^{2}\right) \sqrt{5} \mathrm{~d} t=\frac{5 \sqrt{5}}{3}
$$

Line integrals of vector fields

What is work in physics?

In physics, the work done by a constant force \mathbf{F} in moving an object along a straight line \mathbf{d} is the dot product $W=\mathbf{F} \cdot \mathbf{d}$.

$$
W=F \cdot d=|F||d| \cos (\theta)
$$

What is work in physics?

In physics, the work done by a constant force \mathbf{F} in moving an object along a straight line \mathbf{d} is the dot product $W=\mathbf{F} \cdot \mathbf{d}$.
What if the force \mathbf{F} is not a constant and the move is along a curve?

Figure 15.1 The gravitational field of a point mass located at P_{0}

Work in a vector field

Along the smooth curve \mathcal{C}, the work done by a vector field \mathbf{F} can be approximated by

$$
\sum_{i=1}^{n} \mathbf{F}\left(\mathbf{r}_{i}^{*}\right) \cdot \Delta \mathbf{r}_{i} .
$$

This is the line integral of \mathbf{F} along \mathcal{C}.

Work in a vector field

Along the smooth curve \mathcal{C}, the work done by a vector field \mathbf{F} can be approximated by

$$
\sum_{i=1}^{n} \mathbf{F}\left(\mathbf{r}_{i}^{*}\right) \cdot \Delta \mathbf{r}_{i}
$$

Thus we define

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r} & =\lim \sum_{i=1}^{n} \mathbf{F}\left(\mathbf{r}_{i}^{*}\right) \cdot \Delta \mathbf{r}_{i} \\
& =\lim \sum_{i=1}^{n}\left(\mathbf{F}\left(\mathbf{r}_{i}^{*}\right) \cdot \frac{\Delta \mathbf{r}_{i}}{\Delta t_{i}} \Delta t_{i}\right) \\
& =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t
\end{aligned}
$$

This is the line integral of \mathbf{F} along \mathcal{C}.

15.4 Example 1

Let $\mathbf{F}(x, y)=\left(y^{2}, 2 x y\right)$. Compute the line integral

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} r
$$

from $(0,0)$ to $(1,1)$ along the three curves shown in the picture.

Figure 15.9 Three paths from $(0,0)$ to

Line integrals of conservative vector fields

Let \mathbf{F} be a conservative vector field with potential function φ. Let \mathcal{C} be a smooth curve starts at $\left(x_{0}, y_{0}\right)$ and ends at $\left(x_{1}, y_{1}\right)$. Then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\varphi\left(x_{1}, y_{1}\right)-\varphi\left(x_{0}, y_{0}\right)
$$

Line integrals of conservative vector fields

Let \mathbf{F} be a conservative vector field with potential function φ. Let \mathcal{C} be a smooth curve starts at $\left(x_{0}, y_{0}\right)$ and ends at $\left(x_{1}, y_{1}\right)$. Then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\varphi\left(x_{1}, y_{1}\right)-\varphi\left(x_{0}, y_{0}\right)
$$

Proof Let $\mathbf{r}(t), t \in[a, b]$ be a parametrization of \mathcal{C}. Let $g(t)=\varphi(\mathbf{r}(t))$. Then

Line integrals of conservative vector fields

Let \mathbf{F} be a conservative vector field with potential function φ. Let \mathcal{C} be a smooth curve starts at $\left(x_{0}, y_{0}\right)$ and ends at $\left(x_{1}, y_{1}\right)$. Then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\varphi\left(x_{1}, y_{1}\right)-\varphi\left(x_{0}, y_{0}\right)
$$

Proof Let $\mathbf{r}(t), t \in[a, b]$ be a parametrization of \mathcal{C}. Let $g(t)=\varphi(\mathbf{r}(t))$. Then

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r} & =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t \\
& =\int_{a}^{b} \varphi^{\prime}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{a}^{b} g^{\prime}(t) \mathrm{d} t
\end{aligned}
$$

Line integrals of conservative vector fields

Let \mathbf{F} be a conservative vector field with potential function φ. Let \mathcal{C} be a smooth curve starts at $\left(x_{0}, y_{0}\right)$ and ends at $\left(x_{1}, y_{1}\right)$. Then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\varphi\left(x_{1}, y_{1}\right)-\varphi\left(x_{0}, y_{0}\right)
$$

Proof Let $\mathbf{r}(t), t \in[a, b]$ be a parametrization of \mathcal{C}. Let $g(t)=\varphi(\mathbf{r}(t))$. Then

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r} & =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t \\
& =\int_{a}^{b} \varphi^{\prime}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{a}^{b} g^{\prime}(t) \mathrm{d} t \\
& =g(b)-g(a)=\varphi(\mathbf{r}(b))-\varphi(\mathbf{r}(a)) \\
& =\varphi\left(x_{1}, y_{1}\right)-\varphi\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Example - When the vector field is not conservative.

Let $\mathbf{F}(x, y)=(-y, x)$. Compute the line integral

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} r
$$

from $(1,0)$ to $(0,1)$ along the two curves shown in the picture.

Example - When the vector field is not conservative.

Let $\mathbf{F}(x, y)=(-y, x)$. Compute the line integral

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} r
$$

from $(1,0)$ to $(0,1)$ along the two curves shown in the picture.

Answer: $4 / 3$ and $\pi / 2$.

Possible exam problem

Consider the planar vector field

$$
\mathbf{F}(x, y)=(2 x+2 y, 2 x+2 y)
$$

1. Find all potential functions of \mathbf{F}.
2. Compute the integral $\int_{\mathcal{C}} \mathbf{F} \bullet \mathrm{d} \mathbf{r}$ along any curve starts at $(0,0)$ and ends at $(1,1)$.

Possible exam problem

Consider the planar vector field

$$
\mathbf{F}(x, y)=(2 x+2 y, 2 x+2 y)
$$

1. Find all potential functions of \mathbf{F}.
2. Compute the integral $\int_{\mathcal{C}} \mathbf{F} \bullet \mathrm{d} \mathbf{r}$ along any curve starts at $(0,0)$ and ends at $(1,1)$.

Answer:

1. $\varphi(x, y)=x^{2}+2 x y+y^{2}+C_{1}$
2. $\varphi(1,1)-\varphi(0,0)=4$

15.4 Theorem 1

Let D be an open, connected domain, and let F be a smooth vector field on D. Then the following are equivalent:

1. \mathbf{F} is conservative.
2. $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=0$ for any smooth, closed curve \mathcal{C}.
3. All line integrals of \mathbf{F} with the same start and end are independent of the path.

Quiz

Let $\mathbf{F}(x, y)=\left(y e^{x y}, x e^{x y}\right)$.

1. Determine if \mathbf{F} is conservative.
2. Compute the integral $\int_{\mathcal{C}} \mathbf{F} \bullet \mathrm{d} \mathbf{r}$ along:
a) $\mathbf{r}(t)=\left(t e^{t}, e^{t-1}\right), 0 \leq t \leq 1$.
b) The line from $(e, 1)$ to $\left(0, e^{-1}\right)$.

