Lecture 19 – Green's Theorem in the Plane

Several Variable Calculus, 1MA017

Xing Shi Cai Autumn 2019

Department of Mathematics, Uppsala University, Sweden

Please watch this video before the lecture: 20

Today we will talk about

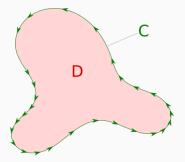
• 16.3 Green's Theorem in the Plane

Green's Theorem in the Plane – Theorem 6, 16.3

Let D be a region with a boundary curve $\mathcal C$ that is oriented counter clockwise. Let ${\bf F}(x,y)=(P,Q)$ be a vector field. Then

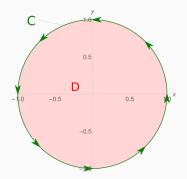
$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}A.$$

Note When \mathbf{F} is conservative, both sides are 0.

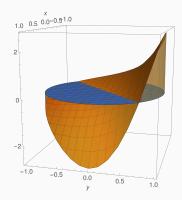


Let \mathcal{C} be the unit circle, counter-clockwise oriented, and $\mathbf{F}(x,y) = (P,Q) = (-y,x)$. Then by Green's theorem

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left(\frac{\partial \mathbf{q}}{\partial x} - \frac{\partial \mathbf{r}}{\partial y} \right) dA = \iint_{D} 2 \, dA = 2\pi.$$



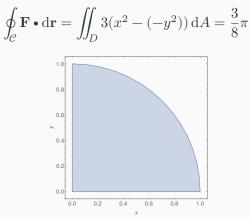
Let \mathcal{C} be the unit circle, counter-clockwise oriented, and $\mathbf{F}(x,y) = (P,Q) = (e^{xy}, e^{xy})$. Then by Green's theorem $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} (ye^{xy} - xe^{xy}) \, \mathrm{d}A = 0$



Let C be counter-clockwise oriented boundary of the quarter-disk $D: 0 \leq x^2 + y^2 \leq 1, x \geq 0, y \geq 0.$

Let
$$\mathbf{F}(x,y) = (P,Q) = (x - y^3, y^3 + x^3).$$

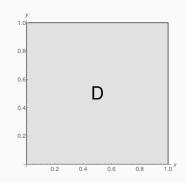
Then by Green's theorem



5

Quiz

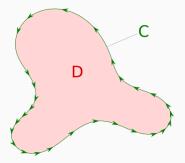
Let \mathcal{C} is the unit square, counter-clockwise oriented. Let $\mathbf{F}(x,y) = (P,Q) = (x^2 - y^2, 2xy)$. Then by Green's theorem $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = ??.$



Compute area with Green's theorem

Let ${\bf F}(x,y)=(P,Q)=(-y/2,x/2).$ Let D be a domain and ${\mathcal C}$ be its boundary. Then by Green's Theorem,

area of
$$D = \iint_D 1 dA = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$



Let $\mathcal C$ be the closed curve given by $\mathbf r(t)=(3\cos t+3\sin t,2\sin t-2\cos t),\qquad 0\leq t<2\pi.$

Compute the area enclosed in \mathcal{C} .

Let $\ensuremath{\mathcal{C}}$ be the closed curve given by

$$\mathbf{r}(t) = (3\cos t + 3\sin t, 2\sin t - 2\cos t), \qquad 0 \le t < 2\pi.$$

Compute the area enclosed in \mathcal{C} .

Answer: By Green's Theorem, the area bounded by ${\mathcal C}$ is given by

$$\oint_{\mathcal{C}} \mathbf{F} \bullet \mathrm{d}\mathbf{r} = 12\pi$$

where $\mathbf{F}(x,y)=(P,Q)=(-y/2,x/2).$

Let $\ensuremath{\mathcal{C}}$ be the closed curve given by

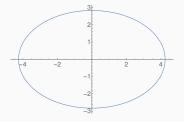
$$\mathbf{r}(t) = (3\cos t + 3\sin t, 2\sin t - 2\cos t), \qquad 0 \le t < 2\pi.$$

Compute the area enclosed in \mathcal{C} .

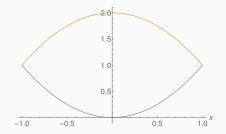
Answer: By Green's Theorem, the area bounded by ${\mathcal C}$ is given by

$$\oint_{\mathcal{C}} \mathbf{F} \bullet \mathrm{d}\mathbf{r} = 12\pi$$

where $\mathbf{F}(x, y) = (P, Q) = (-y/2, x/2).$



Calculate the area of the area between $y = x^2$ and $y = 2 - x^2$ in the interval $-1 \le x \le 1$ using Green's formula.



Hint Then the area bounded by \mathcal{C} is given by

 $\oint_{\mathcal{C}} {\bf F} \cdot {\rm d} {\bf r}$ where ${\bf F}(x,y)=(P,Q)=(-y/2,x/2).$

The end!

