Assignment 2 -- Solutions

Section 2.9

16

(a)

By the balls and bars argument, this is $\binom{63-1}{5-1} = \binom{62}{4}$.

(c)

The question is equivalent to ask the number of solutions for

$$
x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 63, \text{ all } x_i \ge 0.
$$

So this is $\binom{63+6-1}{6-1} = \binom{68}{5}.$

(e) Solution 1

The most straightforward way to do this is to consider 10 cases $x_2 = 0, ..., 9$ and sum up the number of ways to divide 63 - x_2 among other variables. This gives

$$
\sum_{x_2=0}^9 \ \left(\begin{array}{c} (63-x_2) \ +4-1 \\ 4-1 \end{array}\right)\ =\ \sum_{x_2=0}^9 \ \left(\begin{array}{c} 66-x_2 \\ 3 \end{array}\right)\ =\ \sum_{k=57}^{66} \ \left(\begin{array}{c} k \\ 3 \end{array}\right)
$$

We can further simplify this

$$
\sum_{k=57}^{66} \binom{k}{3} = \sum_{k=0}^{66} \binom{k}{3} - \sum_{k=0}^{56} \binom{k}{3} = \binom{66+1}{3+1} - \binom{56+1}{3+1} = \binom{67}{4} - \binom{57}{4}
$$
(1)

(e) Solution 2

While the above is an Okay answer, there's a nicer way to do it.

The total number of solutions without the restriction on x_2 is $\binom{63+5-1}{5-1} = \binom{67}{4}$.

Among them, there are some "bad" solutions in which $x_2 \ge 10$. The number of these bad solutions is l $(63 - 10) + 5 - 1$
 $5 - 1$ = (57) .

So the answer is

$$
\begin{pmatrix} 67 \\ 4 \end{pmatrix} - \begin{pmatrix} 57 \\ 4 \end{pmatrix} \tag{2}
$$

(e) Solution 3

We can also do this by GF. The GF counting the solutions of this problem is

$$
\frac{1}{(1-x)^{4}} \left(1 + x + x^{2} + ... + x^{9}\right)
$$
\n
$$
= \frac{1 - x^{10}}{(1-x)^{5}}
$$
\n
$$
= \left(1 - x^{10}\right) \sum_{k=0}^{\infty} \left(-\frac{5}{k}\right) (-x)^{k}
$$
\n
$$
= \sum_{k=0}^{\infty} \left(-\frac{5}{k}\right) (-x)^{k} - \sum_{k=0}^{\infty} \left(-\frac{5}{k}\right) (-x)^{k+10}
$$

So the coefficient of x^{63} in this GF is

$$
\left(\begin{array}{c} -5 \\ 63 \end{array}\right) (-1)^{63} - \left(\begin{array}{c} -5 \\ 53 \end{array}\right) (-1)^{63} \tag{3}
$$

It's easy to check this equals (2).

Section 8.8

8.8.2

(c)
\n
$$
\sum_{n=0}^{\infty} 2^{n} x^{n} = \sum_{n=0}^{\infty} (2x)^{n} = \frac{1}{1 - 2x}
$$
\n(h)
\n
$$
\sum_{n=0}^{\infty} x^{n+3} = \frac{x^{3}}{1 - x}
$$
\n(k)

 $Out[12]=$ $\frac{6}{1}$ $1 + x^2$

8.8.8

$$
\left(x^2+ x^3 + \dots \right) \ \left(1+ x + x^2 + x^3 \right) \ \left(1+ x^3 + x^6 + \dots \right) \ \left(x + x^2 + \dots + x^6 \right)
$$

$$
= \frac{x^2}{1-x} \frac{1-x^4}{1-x} \frac{1}{1-x^3} \frac{x (1-x^6)}{1-x}
$$

$$
= \frac{x^3 (1+x)^2 (1+x^2) (1-x+x^2)}{(1-x)^2}
$$

The coefficient of x^2 is 0 and the coefficient of x^3 is 1. This simply because there is no way do this with two papers. And the only possible solution for 3 papers is to give Alice two and Dave one.

8.8.17

There are several GF that gives you the correct answer. Here's just one possible way.

Step 1 -- Get the GF

The GF for parton into odd parts is

$$
\prod_{m=1}^\infty\frac{1}{1-x^{2\;m-1}}
$$

But we also know that it's the same as the GF for partition into distinct parts

 \Box $m=1$ $\overline{\mathbb{I}}$ (1 + x^{m})

Since we cannot have a part of the partition of size >10, it suffices to expand the GF

Out[53]= $(1+x)$ $(1+x^2)$ $(1+x^3)$ $(1+x^4)$ $(1+x^5)$ $(1+x^6)$ $(1+x^7)$ $(1+x^8)$ $(1+x^9)$ $(1+x^{10})$

and find the coefficient to x^{10} . It's Okay if you stop here with the correct GF (there are other correct forms).

Step 2

Of course we can expand this completely, but you need computer to do this unless you are really tough.

To do it by hand, note that first, although

$$
\left(1+x^5\right)\ \left(1+x^6\right)\ \left(1+x^7\right)\ \left(1+x^8\right)\ \left(1+x^9\right)\ \left(1+x^{10}\right) \ = \ 1+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+\ldots
$$

with the ... containing many many things, we can drop everything after x^{10} .

So we only need to expand

 $(1 + x)$ $(1 + x^2)$ $(1 + x^3)$ $(1 + x^4)$ $(1 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10})$

The idea is that in each step of the expansion, we drop anything that cannot contribute to the coefficient of x^{10} .

Step 3

By the same argument, since

$$
\left(1+x^4\right)\ \left(1+x^5+x^6+x^7+x^8+x^9+x^{10}\right)
$$

 $= 1 + x⁴ + x⁵ + x⁶ + x⁷ + x⁸ + 2x⁹ + 2x¹⁰ ...$

we only need to expand

$$
\left(\, 1 \, + \, x \, \right) \ \, \left(\, 1 \, + \, x^2 \, \right) \ \, \left(\, 1 \, + \, x^3 \, \right) \ \, \left(\, 1 \, + \, x^4 \, + \, x^5 \, + \, x^6 \, + \, x^7 \, + \, x^8 \, + \, 2 \, \, x^9 \, + \, 2 \, \, x^{10} \, \right)
$$

Step 4

Again, since

$$
\begin{aligned} &\left(1+x^3\right)\;\left(1+x^4+x^5+x^6+x^7+x^8+2\,\,x^9+2\,\,x^{10}\right)\\ & = \; 1+x^3+x^4+x^5+x^6+2\,\,x^7+2\,\,x^8+3\,\,x^9+3\,\,x^{10}+...
$$

we only need to expand

$$
\left(1+x\right)\ \left(1+x^2\right)\ \left(1+x^3+x^4+x^5+x^6+2\ {x}^{7}+2\ {x}^{8}+3\ {x}^{9}+3\ {x}^{10}\right)
$$

But note that $x^3 + x^4 + x^5 + x^6$ in the last factor is of no use to us, so it suffices to expand

 $(1 + x)$ $(1 + x^2)$ $(1 + 2x^7 + 2x^8 + 3x^9 + 3x^{10})$

Step 5

Since

$$
\begin{aligned} &\left(1+x^2\right) \;\left(1+2\; x^7+2\; x^8+3\; x^9+3\; x^{10}\right)\\ &=\,1+x^2+2\; x^7+2\; x^8+5\; x^9+5\; x^{10}+\ldots \end{aligned}
$$

we only need to expand

 $(1 + x)$ $(1 + x^2 + 2x^7 + 2x^8 + 5x^9 + 5x^{10})$.

But note that $x^2 + 2x^7 + 2x^8$ in the last factor is of no use to us, so it suffices to expand

 $(1 + x)$ $(1 + 5 x⁹ + 5 x¹⁰) = 1 + x + 5 x⁹ + 10 x¹⁰ + ...$

So the coefficient of x^{10} in

$$
(1+x)\left(1+x^2\right)\left(1+x^3\right)\left(1+x^4\right)\left(1+x^5\right)\left(1+x^6\right)\left(1+x^7\right)\left(1+x^8\right)\left(1+x^9\right)\left(1+x^{10}\right)
$$

 $n=0$

is 10. This is the answer.

 $n=1$

8.8.20

 $n=0$

(a) \sum $n=0$ $\frac{∞}{0}$ 5ⁿ $\frac{1}{n}$ xⁿ == $\sum_{n=0}^{n}$ $n=0$ $\frac{\infty}{\sqrt{2}}$ (5 x)ⁿ $\frac{2x}{n} = e^{5x}$ (e) \sum [∞] n $\frac{n}{n!}$ xⁿ == $\sum_{n=1}^{n}$ $\frac{∞}{sqrt}$ 1 $\frac{1}{(n-1)!}$ xⁿ = x $\sum_{n=1}^{1}$ $\frac{∞}{sqrt}$ 1 $\frac{1}{(n-1)!}$ $x^{n-1} = x$ $\frac{∞}{()}$ 1 $\frac{1}{n}$ xⁿ = x e^x

 $n=1$

$$
\left(\begin{matrix}f\end{matrix}\right)_{n=\theta} \xrightarrow[n+1]{\frac{1}{n+1}} x^n = \sum_{n=\theta}^{\infty} \frac{1}{(n+1)!} x^n = \frac{1}{x} \sum_{n=\theta}^{\infty} \frac{1}{(n+1)!} x^{n+1}
$$

$$
= \frac{1}{x} \left(\sum_{n=-1}^{\infty} \frac{1}{(n+1)!} x^{n+1} - 1\right) = \frac{1}{x} \left(\sum_{n=\theta}^{\infty} \frac{1}{n!} x^n - 1\right) = \frac{1}{x} \left(e^x - 1\right)
$$

8.8.26

The EGF for a vowel is

$$
\sum_{n=1}^{\infty} \frac{1}{n!} \ x^n = \sum_{n=0}^{\infty} \frac{1}{n!} \ x^n - 1 = e^x - 1
$$

The EGF for T is

$$
\sum_{n=3}^{\infty} \frac{1}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n - \left(1 + x + \frac{x^2}{2!} \right) = e^x - 1 - x - \frac{x^2}{2}
$$

The EGF for Z is

$$
1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}
$$

The EGF for an even digit is

$$
\sum_{n=0}^{\infty} \frac{1}{(2 \, n) \, !} \, x^{2 \, n} = \frac{e^x + e^{-x}}{2}
$$

The EGF for an odd digit is

$$
\sum_{n=0}^{\infty}\,\frac{1}{(2\;n+1)\;!}\;x^{2\;n+1}\;=\;\frac{e^x-e^{-x}}{2}
$$

There are 26 - 5 - 2 = = 19 letters left without any restriction, each of them has the EGF e^x

Since there are 5 vowels, 5 even digits, 5 odd digits, the EGF for the strings that we are looking for is

$$
\left(\, \mathbf{e}^{\chi} \, - \, 1 \, \right)^{\,5} \, \left(\mathbf{e}^{\chi} \, - \, 1 \, - \, \chi \, - \, \dfrac{x^2}{2} \, \right) \, \left(1 \, + \, \chi \, + \, \dfrac{x^2}{2} \, + \, \dfrac{x^3}{6} \, \right) \, \left(\dfrac{\mathbf{e}^{\chi} \, + \, \mathbf{e}^{-\chi}}{2} \, \right)^{5} \, \left(\, \dfrac{\mathbf{e}^{\chi} \, - \, \mathbf{e}^{-\chi}}{2} \, \right)^{5} \, \left(\, \mathbf{e}^{\chi} \, \right)^{\, 19}
$$

The challenge problem

(a) and (b)

The GF for a_n is

$$
\prod_{m=1}^r\frac{1}{1-x^m}
$$

For $r = 2$, this is

$$
\text{Out[76]} = \frac{1}{(-1+x)^2 (1+x)}
$$

This equals

$$
\text{Out}[77] = \frac{1}{2(-1 + x)^2} - \frac{1}{4(-1 + x)} + \frac{1}{4(1 + x)}
$$

So by Newton's binomial theorem, the coefficient of x^n , i.e., a_n is

Out[78]= $\frac{1}{4} + \frac{(-1)^n}{4} + \frac{1+n}{2}$

So a_0 , a_1 , a_2 , a_3 for $r = 2$ is

Out[79]= {1, 1, 2, 2}

This is easily verifiable without using GF.

(c) and (d)

If we partition $5 = 2 + 1 + 1 + 1$, we can picture this as

Out[127]= If we flip this picture by the 45 ° line

Out[129]=

This corresponds to a partition of $5 = 4 + 1$. So for each parton of *n* into parts of size at most *r*, we can do this flipping and get a partition of n into no more than r parts. We can also reversion this transformation. In other words, $a_n = b_n$ so they must have the same GF.

