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The Monty Hall Problem



The Monty Hall Problem

Problem

Suppose you're on a game show, and you're given the choice of
three doors: Behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what's
behind the doors, opens another door, say No. 3, which has a
goat. He then says to you, "Do you want to pick door No. 27" Is
it to your advantage to switch your choice?

1 2

0 BV7 .




Two wrong answers

Answer 1: Among the remaining two doors, both are equally likely
to have the car. So it does not matter if we switch or not.



Two wrong answers

Answer 1: Among the remaining two doors, both are equally likely
to have the car. So it does not matter if we switch or not.

Answer 2: If, regardless of the host's action, the player’s strategy is
to never switch, she will obviously win the car 1/3 of the time.
Hence the probability that she wins if she does switch is 2/3.
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The probability space

The possible outcomes are

S ={AGG2, AGG3,GAG2,GAG3,GGA2, GGA3}
Let p;; be the probability that the host opens door j given that the
car is behind door j.
Since the host always opens either door 2 or door 3, p;s + p;5 = 1.
Also

P(AGG2) = P(AGGH) x P(AGG2|AGGx) = épm
and

P(AGG3) = P(AGGx) x P(AGG3|AGGx) = %pm

etc.
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What probability are we looking for?

Let W, be the event that we win by switching, i.e., GAGS3.

Let D3 be the event that door 3 is opened with a goat, i.e., GAG3

or AGG3.
Then
P(GAG3) l1723 Pas
P(W,|D3) = =1 =
P(GAG3,AGG3)  Ip,s+ 3pi3 Doz +Pi3
Choosing

= pyg = 0 gives 0. (This is the case that if the car is behind door
2, then the host always opens the door 2 to end the game.)

" Py3 = P3 Gives 1/2.
= pi3 = 0 gives 1.

Impossible to decide if to switch without knowing py3 and p;5.
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With a bit more information

What if the host is not allowed to open the door with the car? In
other words

Pag = P33 =0, Pag =p3p = 1.
Then

P(W,|D3) = 25— _ >
D23 + P13 + P13

since p;3 < 1.

So we should always switch!
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Bernoulli Trails

An experiment has two out comes: success and failure.
The probability of success is p and the probability of failure is 1 — p.

If we repeat the experiment, the outcome of each experiment is
independent.

Quiz What is the probability of n such experiments with ¢ success
and n — ¢ failure?

n . .
P(i success in n trials) = z; = ( .)pl(l —p)" .
i

Quiz Why is >z, =17
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Example — A fair coin

If we toss a fair coin, the probability of getting a head or a tail are
both 1/2.

Quiz If we toss a fair coin 100 times, what is the probability that
we get 50 head and 50 tails?

50

(a0) (@) (3

50

Is this > 0.17



Example — A fair coin

This probability is actually quite small

1 1350 /1450
(500(]) <§> <§> ~ .079589



Example — A fair coin

This probability is actually quite small

100\ 1\ 71\
(5()) <§> <§> ~ .079589
But if we try to repeat this many times, the outcome is often close
to 50. The picture is this experiment repeated 10° times.
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Random variables

Let (S, P) be a probability space. Let X : S — R. X is called a

random variable.

Example — we toss two fair dice. There are 62 = 36 possible
outcomes
S={(1,1),(1,2),...,(6,5),(6,6)}.
Because the dice are fair, each outcome is equally likely. So
1
=
We can define a random variable

X((51,82)) = 51 + 59, (51,89) € S.

P(s) s€Ss.

For example
X((3,6)) =34+6=09.
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Expectation

The expectation or mean of X is defined by

BE(X)=)Y X(z)P(x)

eSS
Think this as “on average what X should be".

In the example of fair dice

E(X) = Z P((s1,55))X((s1,52)),

(s1,82)€S
= (4 D)+ o (142) 4t (54 6) + = (54+6) = 7
36 36 36 36 o
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Expectation

The expectation or mean of X is defined by

E(X)=>_ X(x)P(x)

€S
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Expectation

The expectation or mean of X is defined by

or equivalently

where the sum is over all possible values of X.
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Expectation

The expectation or mean of X is defined by

or equivalently

where the sum is over all possible values of X.

In the example of fair dice
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Example — spinner

If we let X, (i) = ¢ where i is the landing region, then
1 1 1 1 S
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Example — spinner

If we let X, (i) = ¢ where i is the landing region, then

1 1 1 1 3
E(X,)=1=+2-+3-+4- +5=,
(X,) 8+ 4+38+ 8+58

If we let X (i), = i*> where i is the landing region, then

1 1 1 1 3
E(X,)=12= +22- 1 32- 1 42- 4 52°,
(X2) g e T g TR
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Linearity of expectation

If X,,...,X,, are random variables defined on the same probability
space, then

E(X,++X,)=EX,) ++ E(X,).
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If X,,...,X,, are random variables defined on the same probability
space, then

E(X,++X,)=EX,) ++ E(X,).
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3

1.1 .11
B(X,) + B(X5) = 12 +27 +32 +42 452
3

1 1 1 1
127 227 327 427 527
+ 8 + 4 + 8 + 8 * 8
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Linearity of expectation

If X,,...,X,, are random variables defined on the same probability
space, then

E(X,++X,)=EX,) ++ E(X,).

In the example spinner
3

1.1 .11
B(X,) + B(X5) = 12 +27 +32 +42 452
3

1 1 1 1
127 227 327 427 527
+ 125+ 220 4800 470 4 570
And
2 1 2 1 2 1
EX;+X,)=(1+1 )§+(2+2 )Z+<3+3 >§

1 3
+@+4%§+®+ﬁ%§
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Linearity of expectation

If X,,...,X,, are random variables defined on the same probability
space, then

EX,+-+X,)=E(X,)+ -+ E(X,).
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Linearity of expectation

If X,,...,X,, are random variables defined on the same probability
space, then

EX,+-+X,)=E(X,)+ -+ E(X,).

In the example fair dice, let X; and X, be the outcome of the first
and the second dice. Then

E(X1> = E<X2)
1 1 1 1 1

1
=-14+-24-34+-44+-5+-6=35
6 +6 +6 +6 +6 +6
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Linearity of expectation

If X,,...,X,, are random variables defined on the same probability
space, then

EX,+-+X,)=E(X,)+ -+ E(X,).

In the example fair dice, let X; and X, be the outcome of the first
and the second dice. Then

E(X1>:E<X2)
—11+12+13+14+15+16—35
6 6 6 6 6 6

And

EX)=E(X,+X,)=2x35=7

14



Bernoulli Trials

Consider n Bernoulli Trials with p success probability. Let X be
the number of success.
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Bernoulli Trials

Consider n Bernoulli Trials with p success probability. Let X be
the number of success.

Then §
E@¥%=§:icgp%l—pyhi=np

=0 \'
Let X, = 0 if the j-th trial fails and X; = 1 otherwise.
Quiz What is E(X)?
E(X;)=px1+(1-p)x0=p

Since X =37 | X,

15
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Variance

For a random variable X, the variance of X is

var (X) = E((X — E(X))?) = E (X?) — (E(X))".
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Variance

For a random variable X, the variance of X is

var (X) = E((X — E(X))?) = E (X?) — (E(X))".

The standard deviation of X is oy = y/var(X).
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Variance

For a random variable X, the of X is
var (X) = E((X — E(X))?) = E (X?) — (E(X))".

The of X is oy = /var(X).

Bernoulli Trial
Let X = 0 if the trial fails and X = 1 otherwise. Then

var (X) = B(X?) — (E(X))? = p— p? = p(1 — p).
Think variance as "how likely is X far away from its expectation”

16



Variance — fair die

Let X be the outcome of throwing a fair die.
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Variance — fair die

Let X be the outcome of throwing a fair die. Then

1 1 1 1 1 1 7

and
91

1.1 1 1 1 1
E(X?) =-14-224+-32+ 424+ 5%+ _6%> = —
) =51+562 76> 764 T55 "6 6
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Variance — fair die

Let X be the outcome of throwing a fair die. Then

1,1, 1, 1, 1_ 1. 7
EX)=21+=2+23+-4+>5+-6=—
()6+6+6+6+6+6 2

and

1.1 1 1 1 1 91
E(X?)=-1+-224 2324242+ -52 + 62 = —
(X 6 "6 "6 "6 "5 Te 6

So the variance of X is

2

17
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Independent random variables

The random variables X, ..., X,, are independent if all
1 <i <j<mnand each pair a,b, the events X; =a and X, =0
are independent.
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Independent random variables

The random variables X, ..., X,, are independent if all
1 <i <j<mnand each pair a,b, the events X; =a and X, =0
are independent.

For example, X, X, are independent if

for all a, b.

18



Independent random variables — Example

Let X, and X, be the outcome of throwing a die twice. Then X,
and X, are independent.
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Independent random variables — Example

Let X, and X, be the outcome of throwing a die twice. Then X}

and X, are independent. For example

1
P(X,=3,X,=6)=—
and . "
PX,=3)PX,=6)==-==—
Easy to see
1

for0<a<6and 0<b<6.
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Dependent random variables — Example

Let X, be the outcome of throwing a die. Let X, = X;. Then X,
and X, are not independent.
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Dependent random variables — Example

Let X, be the outcome of throwing a die. Let X, = X;. Then X,
and X, are not independent.

For example

and
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Product of independent variables

If X,,...,X,, are independent, then

E(X,X,..X,) = E(X,)E(X,)... E(X,)
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Product of independent variables

If X,,...,X,, are independent, then

For example, in the example of throwing a fair die twice,

i
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Sum of independent variables

If Xq,...,X,, are independent, then

var(X; + Xy + -+ X)) = var(X;) + var(X,) + - + var(X,,)
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Sum of independent variables

If Xq,...,X,, are independent, then
var(X; + Xy + -+ X)) = var(X;) + var(X,) + - + var(X,,)
For example

var(X; + Xp) = E((X; + X,)?) — (E(X; + X5))?
= var(X;) + var(X,) + E(2X, X,) — 2E(X;)E(X,)
= var(X;) + var(X,).

Not necessarily true if X; and X, are dependent.
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Variance—Bernoulli Trials

Consider n. Bernoulli Trials with p success probability. Let X be
the number of success.
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Variance—Bernoulli Trials

Consider n. Bernoulli Trials with p success probability. Let X be
the number of success.

Then

var(x) = > (i = (m))? () (1 = )" = npl1 =)
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Variance—Bernoulli Trials

Consider n. Bernoulli Trials with p success probability. Let X be
the number of success.

Then

var(x) = Y6 ()2 ()2 = - = a1 = p)

=0

Let X; = 1 if the j-th trial fails and X; = 1 otherwise.
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Variance—Bernoulli Trials

Consider n. Bernoulli Trials with p success probability. Let X be

the number of success.

Then

var(x) = Y6 ()2 ()2 = - = a1 = p)

=0

Let X; = 1 if the j-th trial fails and X; = 1 otherwise.

Since X = 2?21 X, and Xy, ..., X, are independent,
var(X) = var (Z XZ-) = Zvar (X;) = np(1 —p).
j=1 j=1

23
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Self-study guide (for people who missed the class)

= \Watch online video lectures here.

= Read textbook chapter 10.3-10.5

24


http://pwp.gatech.edu/math3012openresources/lecture-videos/lecture-26/
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