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The Meaning of Statements



What’s the next number?

It is pretty easy to guess what is the next number

• 2, 5, 8, 11, 14, 17, 20, 23, 26, …
• 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, …
• 1, 2, 5, 14, 42, 132, 429, 1430, 4862, …
• 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, …
• 2, 3, 6, 11, 18, 27, 38, 51, …

Quiz
What is your guess?

You do no have to guess. Try OEIS – Online Encyclopedia of
Integer Sequences!

1

http://oeis.org/search?q=+2%2C+3%2C+6%2C+11%2C+18%2C+27%2C+38%2C+51%2C+&sort=&language=english&go=Search
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What does the dots mean?

What about 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3,
4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, …?

What is the precise meaning of

1 + 2 + 3 + ⋯+ 6

Sum of the first integers? Or sum of the first 19 terms of the
above sequence?

Challenge
Can you find what the sequence is?
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Make definition precise – summation

Let 𝑓 ∶ ℕ → ℕ be a function. Let

1
∑
𝑖=1

𝑓(𝑖) = 𝑓(1)

and for 𝑛 > 1
𝑛

∑
𝑖=1

𝑓(𝑖) = 𝑓(𝑛) +
𝑛−1
∑
𝑖=1

𝑓(𝑖)

Or more concisely

𝑛
∑
𝑖=1

𝑓(𝑖) =
⎧{
⎨{⎩

𝑓(1) 𝑛 = 1
𝑓(𝑛) +∑𝑛−1

𝑖=1 𝑓(𝑖) 𝑛 > 1
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Make definition precise – factorial

Previously, we defined

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × ⋯ × 3 × 2 × 1

With new notation, now we write

𝑛! =
⎧{
⎨{⎩

1 𝑛 = 1
𝑛 × (𝑛 − 1)! 𝑛 > 1

Note When it is clear from the context, it is Okay to use the ….
Professional mathematicians do that too.
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Recursive definition in Python

def sumrecursive(n):
if n == 1:

return 2;
else :

return sumrecursive(n-1) + (n*n - 2*n + 3)
sumrecursive(3)

Quiz
The output of this code is 11. What about sumrecursive(4)

sumrecursive(n) simply computes

2 + 3 + 6 + 11 + 18 + 27 + 38 + 51 + · · · + (𝑛2 − 2𝑛 + 3)
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Solving Combinatorial Problems
Recursively



Lines and areas

Each pair of the 4 lines intersects.

No point in the plane belongs to more than two lines.

These 4 lines determine 11 regions.
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Lines and areas–Recursion

Let 𝑛 be the number of lines and 𝑟(𝑛) be the number of regions.
Then

𝑟(𝑛) = 𝑛 + 𝑟(𝑛 − 1)

Explanation: the 𝑛-th line is divided into 𝑛 segments.
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Lines and areas–Recursion

Problem
Can you find 𝑟(𝑛)?

𝑟(𝑛) = 𝑛 + 𝑟(𝑛 − 1)
= 𝑛 + (𝑛 − 1) + ⋯+ 2 + 𝑟(1)
= 𝑛 + (𝑛 − 1) + ⋯+ 2 + 2

= 𝑛(𝑛 + 1)
2 + 1
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Tiling chessboard

A 2 × 𝑛 chess board needs to be titled with 2 × 1 dominoes .
Let 𝑡(𝑛) be the number of possible ways.
Quiz
Why for 𝑛 ≥ 2

𝑡(𝑛) = 𝑡(𝑛 − 1) + 𝑡(𝑛 − 2)

10



Tiling chessboard

There are two possible ways to start

• One vertical domino, which left 𝑡(𝑛 − 1) choices for the rest.
• Two horizontal dominoes, which left 𝑡(𝑛 − 2) choices for the

rest. 11



Ternary string

A ternary string of alphabet {𝑎, 𝑏, 𝑐} is good if there’s no 𝑐
followed by 𝑎. Example

• a a b c b b a – good
• c a b b a a c b c c – bad

Let 𝑔(𝑛) be the number of good string of length 𝑛.

Quiz
What is 𝑔(1) and 𝑔(2)?

claim

𝑔(𝑛) = 3𝑔(𝑛 − 1) − 𝑔(𝑛 − 2).
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Ternary string

There are three ways to construct a good string of length 𝑛 –

• Good string of length 𝑛 − 1 + “c” –
• Good string of length 𝑛 − 1 + “b” –
• Good string of length 𝑛 − 1 + “a” – problem here

• Good string of length 𝑛 − 2 + “ca” – bad
• Everything else –

So in total there are 3𝑔(𝑛− 1) − 𝑔(𝑛− 2) good strings of length 𝑛.

Challenge Can you find 𝑔(6)?
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Find the Greatest Common Divisors



Division Theorem

Seems obvious? Not so quick. Easy to prove uniqueness. But how
do we know such 𝑞 and 𝑟 exists?

Proof by contradiction
Let 𝑡 be the least positive integer for which there are integers 𝑚
and 𝑛 with 𝑚+ 𝑛 = 𝑡, but there do not exist integers 𝑞 and 𝑟
satisfying the theorem. Show such 𝑡 cannot exist.
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Division Theorem – details

Assumption: 𝑡 = 𝑚+ 𝑛 is the least 𝑡 such that no 𝑞 and
0 ≤ 𝑟 ≤ 𝑛 makes 𝑚 = 𝑞 ⋅ 𝑛 + 𝑟.

Find contradiction as follows

• 𝑛 ≠ 1, otherwise take 𝑞 = 𝑚 and 𝑟 = 0.
• 𝑚 ≠ 1, otherwise take 𝑞 = 0 and 𝑟 = 1.
• There exists 𝑞 and 𝑟 such that

𝑚− 1 = 𝑞 × 𝑛 + 𝑟 and 0 ≤ 𝑟 < 𝑛.
• If 𝑟 + 1 < 𝑛, then contradiction.
• If 𝑟 + 1 = 𝑛, then

𝑚 = 𝑞 × 𝑛 + 𝑛 = (𝑞 + 1)𝑛 + 0
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Euclidean Algorithm

This gives us an algorithm to compute the greatest common divisor

def gcd(m, n):
if m % n == 0:

return n
else:

return gcd(n ,m%n)
gcd(12 ,5)

16



Euclidean Algorithm – history

The algorithm appears in Euclid’s
Elements (300 BC).
The algorithm was probably not
discovered by Euclid.
He compiled results from earlier
mathematicians in his Elements.
See Wikipedia.

”Everything of importance has been said before by somebody who
did not discover it” — Alfred North Whitehead.

17

https://en.wikipedia.org/wiki/Euclid


Euclidean Algorithm – history

The algorithm appears in Euclid’s
Elements (300 BC).
The algorithm was probably not
discovered by Euclid.
He compiled results from earlier
mathematicians in his Elements.
See Wikipedia.

”Everything of importance has been said before by somebody who
did not discover it” — Alfred North Whitehead.

17

https://en.wikipedia.org/wiki/Euclid


Induction



Principle of Mathematical Induction

Let 𝑆𝑛 be an open statement involving a
positive integer 𝑛. If 𝑆1 is true, and if for each

positive integer 𝑘, assuming that the
statement 𝑆𝑘 is true implies that the

statement 𝑆𝑘+1 is true, then 𝑆𝑛 is true for
every positive integer 𝑛.
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Example – sum of the first 𝑛 integers

How to prove by induction
𝑛

∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2

• Check 1(1+1)
2 = 1. So holds for 𝑛 = 1.

• Assume that for some positive integer 𝑘
𝑘

∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2

• Then
𝑘+1
∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2 + (𝑘 + 1) = (𝑘 + 2)(𝑘 + 1)

2

18



Example – sum of the first 𝑛 integers

How to prove by induction
𝑛

∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2

• Check 1(1+1)
2 = 1. So holds for 𝑛 = 1.

• Assume that for some positive integer 𝑘
𝑘

∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2

• Then
𝑘+1
∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2 + (𝑘 + 1) = (𝑘 + 2)(𝑘 + 1)

2

18



Example – sum of the first 𝑛 integers

How to prove by induction
𝑛

∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2

• Check 1(1+1)
2 = 1. So holds for 𝑛 = 1.

• Assume that for some positive integer 𝑘
𝑘

∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2

• Then
𝑘+1
∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2 + (𝑘 + 1) = (𝑘 + 2)(𝑘 + 1)

2

18



Example – sum of the first 𝑛 integers

How to prove by induction
𝑛

∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2

• Check 1(1+1)
2 = 1. So holds for 𝑛 = 1.

• Assume that for some positive integer 𝑘
𝑘

∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2

• Then
𝑘+1
∑
𝑖=1

𝑖 = 𝑘(𝑘 + 1)
2 + (𝑘 + 1) = (𝑘 + 2)(𝑘 + 1)

2

18



Example – sum of the first 𝑛 odd integers

How to prove by induction
𝑛

∑
𝑖=1

(2𝑖 − 1) = 𝑛2

• Check that it holds for 𝑛 = 1.
• Assume that for some positive integer 𝑘

𝑘
∑
𝑖=1

(2𝑖 − 1) = 𝑘2

• Then
𝑘+1
∑
𝑖=1

(2𝑖 − 1) = 𝑘2 + (2𝑘 + 1) = (𝑘 + 1)2
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Example – sum of 1/√𝑛

Problem
Let 𝑆𝑛 = 1/

√
1 + 1/

√
2 + ⋯+ 1/√𝑛. Show that for 𝑛 ≥ 2,

𝑆𝑛 > √𝑛

• Check 𝑛 = 2.
• Assume that for some positive integer 𝑘 ≥ 2 𝑆𝑘 >

√
𝑘

• Then
√
𝑘 + 1 > 𝑆𝑘+1 because

𝑆𝑘+1 − 𝑆𝑘 = 1√
𝑘 + 1 >

√
𝑘 + 1 −

√
𝑘.

Challenge Show that 𝑆𝑛 < 2√𝑛 and 2√𝑛 − 𝑆𝑛 < 3/2.
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Example – sum of binomial coefficients

How to prove by induction
𝑛

∑
𝑖=𝑘

(𝑖
𝑘) = (𝑛 + 1

𝑘 + 1), (𝑛 ≥ 𝑘 ≥ 0)

Quiz
If we induction on 𝑛, what should we check first?

• We treat 𝑘 as a fixed integer. Check that it holds for 𝑛 = 𝑘.
• Assume that for some positive integer 𝑚 ≥ 𝑘

𝑚
∑
𝑖=𝑘

(𝑖
𝑘) = (𝑚+ 1

𝑘 + 1)

• Then
𝑚+1
∑

𝑖=𝑘+1
(𝑖
𝑘) = (𝑚+ 1

𝑘 + 1) + (𝑚+ 1
𝑘 ) = (𝑚+ 2

𝑘 + 1)
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Strong induction

Let 𝑓(1) = 3, 𝑓(2) = 5, and 𝑓(𝑛) = 2𝑓(𝑛 − 1) − 𝑓(𝑛 − 2).
Quiz
If we compute the first numbers, we get the sequence

3, 5, 7, 9, 11,…

Do you see a pattern?

How to prove 𝑓(𝑛) = 2𝑛 + 1? (The wrong way)

• Check holds for 𝑛 = 1.
• Assume it holds for some 𝑘 ≥ 1.
• Then

𝑓(𝑘 + 1) = 2𝑓(𝑘) − 𝑓(𝑘 − 1) = ???.
• We have made assumptions for 𝑓(𝑘), not 𝑓(𝑘 − 1).
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Strong induction

Let 𝑓(1) = 3, 𝑓(2) = 5, and 𝑓(𝑛) = 2𝑓(𝑛 − 1) − 𝑓(𝑛 − 2).
How to prove 𝑓(𝑛) = 2𝑛 + 1? (The correct way)

• Check holds for 𝑛 = 1 and 𝑛 = 2.

• Assume it holds for 𝑘 ≥ 2 and 𝑘 − 1 ≥ 1.
• Then

𝑓(𝑘+1) = 2𝑓(𝑘)−𝑓(𝑘−1) = 2(2𝑘+1)−(2(𝑘−1)+1) = 2(𝑘+1)+1.

• We use assumptions for both 𝑓(𝑘) and 𝑓(𝑘 − 1).
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Special topic – Catalan numbers
(Part 2)



Catalan number

Recall that we have defined Catalan number 𝐶(𝑛) = (2𝑛𝑛 ) 1
𝑛+1 .

𝐶(𝑛) is the number of Dyck path of length 2𝑛.

𝐶(𝑛) is also “good” lattice walks from (0, 0) to (𝑛, 𝑛).
𝐶(0) = 1, 𝐶(1) = 1, 𝐶(2) = 2, 𝐶(3) = 5, 𝐶(4) = 14.
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Catalan number and triangulation

A triangulation of a convex polygon with 𝑛 + 2 vertices is set of
𝑛 − 1 diagonals which do not cross.

Let 𝑇𝑛 be the number of triangulation of a convex 𝑛-gon. Then

𝑇𝑛+2 = 𝐶(𝑛) = 1
𝑛 + 1(

2𝑛
𝑛 ), (𝑛 ≥ 0).
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Catalan number and triangulation

Claim

𝑇𝑛+3 =
𝑛

∑
𝑘=0

𝑇𝑘+2𝑇𝑛−𝑘+2

Fix an edge 𝑒 in a 𝑛 + 3-gon. Removing it gives two triangulated
polygon with 𝑘 + 2 and 𝑛 − 𝑘 + 2 vertices.
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Catalan number and triangulation

Claim

𝑇𝑛+3 =
𝑛

∑
𝑘=0

𝑇𝑘+2𝑇𝑛−𝑘+2
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Catalan number and triangulation

Since
𝑇𝑛+3 =

𝑛
∑
𝑘=0

𝑇𝑘+2𝑇𝑛−𝑘+2

If
𝐶(𝑛 + 1) =

𝑛
∑
𝑘=0

𝐶(𝑘)𝐶(𝑛 − 𝑘).

then
𝑇𝑛+2 = 𝐶(𝑛)

27



Catalan number and Dyck path

Recall that the number of Dyck paths of length 2𝑛 is 𝐶(𝑛).
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Catalan number and Dyck path – Decomposition

A Dyck path of length 2(𝑛 + 1) can be decomposed into two Dyck
paths of length 2𝑘 and 2(𝑛 − 𝑘), where 2(𝑘 + 1) is the first time
the path comes back 0 again.

Thus
𝐶(𝑛 + 1) =

𝑛
∑
𝑘=0

𝐶(𝑘)𝐶(𝑛 − 𝑘).
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Catalan number and binary trees

In a binary tree each node has either no children, one left-child,
one right-child, or two children.

Claim
The number of binary trees of 𝑛 nodes is 𝐶(𝑛).
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Catalan number and binary trees – Proof 1

Let 𝐵𝑛 be the number of binary trees of 𝑛 nodes.

Quiz
Can you see why

𝐵𝑛+1 =
𝑛

∑
𝑘=0

𝐵𝑘𝐵𝑛−𝑘.

A binary tree of size 𝑛 + 1 can be decomposed of left subtree of
size 𝑘 and a right subtree of 𝑛 − 𝑘.
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Catalan number and binary trees – Proof 2

A bijection between binary trees and triangulation
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Plane trees

Formal definition
A plane tree consists of a root node an ordered list of plane trees
(subtrees).
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Catalan number and plane trees

Claim
Let 𝐺𝑛 be the number of plane trees of 𝑛 nodes.

𝐺𝑛+1 = 𝐶(𝑛)

A bijection between general trees and binary trees. 𝐺𝑛+1 = 𝐵𝑛.
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Appendix



Self-study guide (for people who missed the class)

Watch online video lectures 1 to 7 here.

• Read textbook chapter 3, Inductive Proof – Common Errors
and Pitfalls and also these slides.

• Watch online video lectures 8 to 9 here and all video lectures
here.

• Recommended exercises Have a quick look of
• Textbook 3.11 (some solutions here)
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http://pwp.gatech.edu/math3012openresources/lecture-videos/lecture-3/
https://www.cs.cmu.edu/~15251/notes/induction-pitfalls.pdf
https://www.cs.cmu.edu/~15251/notes/induction-pitfalls.pdf
https://people.math.gatech.edu/~trotter/math-3012/3-Induction_and_Recursion.pdf
http://pwp.gatech.edu/math3012openresources/lecture-videos/lecture-3/
http://pwp.gatech.edu/math3012openresources/lecture-videos/lecture-4/
https://people.math.gatech.edu/~trotter/math-3012/chapter3-solutions.pdf

	The Meaning of Statements
	Solving Combinatorial Problems Recursively
	Find the Greatest Common Divisors
	Induction
	Special topic – Catalan numbers (Part 2)
	Appendix

