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Basic notion and terminology



Review – What is a function?

A function can be seen a rule to convert input to output. (Just like
a function in computer languages)
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What is a GF (generating function)

Given an infinite sequence 𝜎 = (𝑎0, 𝑎1,… ), we associate it with a
“function” 𝐹(𝑥) written as

𝐹(𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥𝑛,

called the generating function of 𝜎.

Warning
Very formally speaking, 𝐹(𝑥) is not a function and we do not
care if the sum converges.

We just pretend in this class that they are well-defined functions.

There are GFs that do not correspond to any function, e.g.,

∑
𝑛≥0

𝑛!𝑥𝑛.
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Examples of GF

If 𝑎0 = 1 and 𝑎𝑛 = 0 for all 𝑛 ≥ 1, then

𝐹(𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥𝑛 = 1.

If 𝑎𝑛 = 1 for all 𝑛 = 0,… , 4, and 𝑎𝑛 = 0 for all 𝑛 ≥ 5 then

𝐹(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 = 1 − 𝑥5

1 − 𝑥

If 𝑎𝑛 = 1 for all 𝑛 = 0,… ,𝑚, and 𝑎𝑛 = 0 for all 𝑛 ≥ 𝑚+ 1 then

𝐹(𝑥) = 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑚 = 1 − 𝑥𝑚+1

1 − 𝑥
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Examples of GF

If 𝑎𝑛 = 1 for all 𝑛 ≥ 0, then

𝐹(𝑥) = ∑
𝑛≥0

𝑥𝑛 = 1
1 − 𝑥.

If 𝑎𝑛 = 1/𝑛! for all 𝑛 ≥ 0, then

𝐹(𝑥) = ∑
𝑛≥0

1
𝑛!𝑥

𝑛 = 𝑒𝑥.

If 𝑎0 = 0 and 𝑎𝑛 = 1/𝑛 for all 𝑛 ≥ 1, then

∑
𝑛≥1

1
𝑛𝑥𝑛 = − log( 1

1 − 𝑥)
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Examples of GF

Quiz

∑
𝑛≥0

(𝑚
𝑛)𝑥𝑛 = ?

Quiz

∑
𝑛≥0

1
(2𝑛)!𝑥

2𝑛 = ?
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Generating functions and
combinatorics



Combinatorial Sum

Let 𝒜 and ℬ be two sets contains objects which has sizes, e.g.,

𝒜 = { , , ,…} ,
ℬ = { , , , , , ,… } .
𝒞 = 𝒜 ∪ℬ = { , , , , , , , , … } .

Let 𝑎𝑛 (𝑏𝑛) be the number of objects of size 𝑛 in 𝒜 (ℬ).

Let 𝐴(𝑥) and 𝐵(𝑥) be the GFs for 𝑎𝑛 and 𝑏𝑛.

Punch line! – Then the GF for 𝒞 = 𝒜 ∪ℬ is

𝐶(𝑥) = 𝐴(𝑥) + 𝐵(𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥𝑛 +∑
𝑛≥0

𝑏𝑛𝑥𝑛 = ∑
𝑛≥0

(𝑎𝑛 + 𝑏𝑛)𝑥𝑛
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Combinatorial Sum – Example

𝒜 = { , , ,…} ,
ℬ = { , , , , , ,… } .
𝒞 = 𝒜 ∪ℬ = { , , , , , , , , … } .

In the example above, 𝑎𝑛 = 1 and 𝑏𝑛 = 2 for all 𝑛. So

𝐴(𝑥) = ∑
𝑛≥1

𝑥𝑛 = 𝑥
1 − 𝑥,

𝐵(𝑥) = ∑
𝑛≥1

2𝑥𝑛 = 2 𝑥
1 − 𝑥,

𝐶(𝑥) = 𝐴(𝑥) + 𝐵(𝑥) = 3 𝑥
1 − 𝑥 = ∑

𝑛≥1
3𝑥𝑛.
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Combinatorial Product

Let 𝒜 and ℬ be two sets contains objects which has sizes, e.g.,

𝒜 = {∅, , , ,… } , ℬ = {∅, , , ,… } .
𝒞 = 𝒜×ℬ = {(∅, ∅), (∅, ), ( , ∅), (∅, ), ( , ∅), ( , ),…} .

Let 𝑎𝑛 (𝑏𝑛) be the number of objects of size 𝑛 in 𝒜 (ℬ).

Let 𝐴(𝑥) and 𝐵(𝑥) be the GFs for 𝑎𝑛 and 𝑏𝑛.

Punch line! – Then the GF for 𝒞 = 𝒜×ℬ is

𝐶(𝑥) = 𝐴(𝑥)𝐵(𝑥) = (∑
𝑛≥0

𝑎𝑛𝑥𝑛)(∑
𝑛≥0

𝑏𝑛𝑥𝑛)

= ∑
𝑛≥0

(
𝑛

∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘)𝑥𝑛
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Newton’s Binomial Theorem



Extend the definition of (𝑟𝑘)

For integers 𝑛 ≥ 𝑚 ≥ 0, we have defined that

(𝑛
𝑚) = 𝑃(𝑛,𝑚)

𝑚! = 𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 −𝑚+ 1)
𝑚!

But let’s be crazier and let 𝑟 ∈ ℝ and 𝑘 ∈ ℤ and define

(𝑟
𝑘) =

⎧{{
⎨{{⎩

𝑟(𝑟−1)(𝑟−2)…(𝑟−𝑘+1)
𝑘! 𝑘 > 0,

1 𝑘 = 0,
0 𝑘 < 0.
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Extend the definition of (𝑟𝑘)

(𝑟
𝑘) =

⎧{{
⎨{{⎩

𝑟(𝑟−1)(𝑟−2)…(𝑟−𝑘+1)
𝑘! 𝑘 > 0,

1 𝑘 = 0,
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For integers 𝑘 > 𝑟 ≥ 0, (𝑟𝑘) = 0 – there is no way to choose 5
out of 3 .

For integers 𝑟 ≥ 0 and 𝑘 < 0, (𝑟𝑘) = 0 – there is no way to choose
-1 out of 3 .

If 𝑘 = 0, (𝑟0) = 1 – there is one way to choose 0 (do nothing)
Example

(−7/2
5 ) = (−7/2)(−9/2)(−11/2)(−13/2)(−15/2)

5! .
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Newton’s Binomial Theorem

Quiz
How is 2𝜋 defined?

Theorem 8.10
For all 𝑝 ∈ ℝ with 𝑝 ≠ 0,

(1 + 𝑥)𝑝 = ∑
𝑛≥0

(𝑝
𝑛)𝑥𝑛

When 𝑝 ∈ ℕ, this is just binomial theorem.

Proof by taking the Taylor expansion of (1 + 𝑥)𝑝 at 𝑥 = 0.
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Combinatorial Product – revisited

The sets

𝒜 = {∅, , , ,… } , ℬ = {∅, , , ,… } .
𝒞 = 𝒜×ℬ = {(∅, ∅), (∅, ), ( , ∅), (∅, ), ( , ∅), ( , ),…} .

The GF

𝐴(𝑥) = 1
1 − 𝑥, 𝐵(𝑥) = 1

1 − 𝑥, 𝐶(𝑥) = ( 1
1 − 𝑥)

2

By Newton’s binomial theorem

𝐶(𝑥) = ∑
𝑛≥0

(−2
𝑛 )(−𝑥)𝑛

and

[𝑥𝑛]𝐶(𝑥) = (−1)𝑛 (−2)(−3)… (−2 − 𝑛 + 1)
𝑛! = (𝑛 + 1)!

𝑛! = 𝑛 + 1
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Applying Newton’s Binomial Theorem

Lemma 8.12
For all integers 𝑚 ≥ 0,

(−1/2
𝑚 ) = (−1)𝑚 (2𝑚𝑚 )

22𝑚 .

Proof by induction. Quiz What is (−1/2
0 )?
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Applying Newton’s Binomial Theorem

Theorem 8.13
1√

1 − 4𝑥
= ∑

𝑛≥0
(2𝑛

𝑛 )𝑥𝑛.

Does this ring a bell? 14



Applying Newton’s Binomial Theorem

Quiz - Corollary 8.14
Use

1√
1 − 4𝑥

= ∑
𝑛≥0

(2𝑛
𝑛 )𝑥𝑛

to show that for all integers 𝑛 ≥ 0

22𝑛 = ∑
𝑘≥0

(2𝑘
𝑘 )(2𝑛 − 2𝑘

𝑛 − 𝑘 ).
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Another look at Amanda’s money



Give 1 to 𝑘 child

The ways to give to 1 child forms the set

𝒜 = { , , ,…}

Since there are 𝑎𝑛 = 1 way to distribute 𝑛 among 1 child so the
child has > 0 , the GF of 𝒜 is

𝐴(𝑥) = 𝑥 + 𝑥2 + 𝑥3 +⋯ = 𝑥
1 − 𝑥

Note 𝑎0 = 0.

So 𝒜𝑘 contains the ways to distribute 𝑛 among 𝑘 children. Its
GF is

𝐴(𝑥)𝑘 = ( 𝑥
1 − 𝑥)

𝑘
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Give 𝑛 to 5 child

Quiz
What is the combinatorial meaning of the coefficient of 𝑥6 in

(𝑥+𝑥2 …)(𝑥+𝑥2 …)(𝑥+𝑥2 …)(𝑥+𝑥2 …)(𝑥+𝑥2 …) = 𝑥5

(1 − 𝑥)5

It is the number of ways to distribute 6 among 5 children so
everyone has > 0
I.e., (54) = 5 by the balls and bars argument.
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Give 𝑛 to 5 child

Use SageMath, it is also easy to see that it is 5, and in general, the
coefficient of 𝑥𝑛+1 is (𝑛4).

To get this without computer or combinatorics

18
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Give 5 to 3 children allowing empty hands

How many ways can we distribute 5 to 3 children, allowing a
child to have 0 ?

The trick is to use bars and balls with three extra , e.g.,

This example gives the children 3, 4, 1 .

But then we just take back one from each child, so they get
2, 3, 0 .

So the answer is (82).
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Give 𝑛 to 𝑘 children allowing empty hands

How many ways can we distribute 𝑛 to 𝑘 children, allowing a
child to have 0 ?

The trick is to add 𝑘 extra .

Then we distribute it by inserting 𝑘 − 1 bars among the 𝑛 + 𝑘 − 1
gaps.

In the end, we take back one from each child.

So there this is in total (𝑛+𝑘−1
𝑘−1 ) ways to do so.
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Give 𝑛 to 𝑘 children allowing empty hands

(1 − 𝑥)−𝑛 is GF for 𝒜𝑛 with

𝒜 = {∅, , , ,… } ,

[𝑥𝑘](1 − 𝑥)−𝑛 is the number of ways to distribute 𝑛 one-dollar bills
to 𝑘 children, allowing children to have no money.

By the bars and
balls argument, this is (𝑛+𝑘−1

𝑘−1 ) for 𝑘 ≥ 1. So

1
(1 − 𝑥)𝑛 = 1 +∑

𝑘≥1
(𝑛 + 𝑘 − 1

𝑘 − 1 )𝑥𝑘.

Or by Newton’s binomial theorem

1
(1 − 𝑥)𝑛 = ∑

𝑘≥0
(−𝑛

𝑘 )(−1)𝑘𝑥𝑘

21



Give 𝑛 to 𝑘 children allowing empty hands

(1 − 𝑥)−𝑛 is GF for 𝒜𝑛 with

𝒜 = {∅, , , ,… } ,

[𝑥𝑘](1 − 𝑥)−𝑛 is the number of ways to distribute 𝑛 one-dollar bills
to 𝑘 children, allowing children to have no money. By the bars and
balls argument, this is (𝑛+𝑘−1

𝑘−1 ) for 𝑘 ≥ 1. So

1
(1 − 𝑥)𝑛 = 1 +∑

𝑘≥1
(𝑛 + 𝑘 − 1

𝑘 − 1 )𝑥𝑘.

Or by Newton’s binomial theorem

1
(1 − 𝑥)𝑛 = ∑

𝑘≥0
(−𝑛

𝑘 )(−1)𝑘𝑥𝑘

21



Give 𝑛 to 𝑘 children allowing empty hands

(1 − 𝑥)−𝑛 is GF for 𝒜𝑛 with

𝒜 = {∅, , , ,… } ,

[𝑥𝑘](1 − 𝑥)−𝑛 is the number of ways to distribute 𝑛 one-dollar bills
to 𝑘 children, allowing children to have no money. By the bars and
balls argument, this is (𝑛+𝑘−1

𝑘−1 ) for 𝑘 ≥ 1. So

1
(1 − 𝑥)𝑛 = 1 +∑

𝑘≥1
(𝑛 + 𝑘 − 1

𝑘 − 1 )𝑥𝑘.

Or by Newton’s binomial theorem

1
(1 − 𝑥)𝑛 = ∑

𝑘≥0
(−𝑛

𝑘 )(−1)𝑘𝑥𝑘

21



Fruit basket

Example 8.5
A grocery store is preparing holiday fruit baskets for sale. Each
fruit basket will have 20 pieces of fruit in it, chosen from , ,

, and . How many different ways can such a basket be
prepared if there must be at least one apple in a basket, a basket
cannot contain more than three pears, and the number of
must be a multiple of four?

22



Fruit basket – Equivalent problem

Let

𝒜 = { , , ,…} , 𝒫 = {∅, , , } ,
𝒪 = {∅, , ,…} ,
𝒢 = {∅, , , ,… } ,

What is the number of objects in ℬ = 𝒜×𝒫× 𝒪× 𝒢 of size 20?

Quiz
What is the GF for pears?
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Fruit basket

The GFs are

𝐴(𝑥) = 𝑥 + 𝑥2 + 𝑥3 ⋯ = 𝑥
1 − 𝑥, 𝑃(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3,

𝑂(𝑥) = 1 + 𝑥4 + 𝑥8 ⋯ = 1
1 − 𝑥4 ,

𝐺(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 ⋯ = 1
1 − 𝑥.

The GF of ℬ (baskets) is

𝐵(𝑥) = 𝐴(𝑥)𝑃(𝑥)𝑂(𝑥)𝐺(𝑥)
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Fruit basket

So the answer is
[𝑥20]𝐵(𝑥) = 210,

and [𝑥𝑛]𝐵(𝑥) = 𝑛(𝑛 + 1)/2 – pretty easy by SageMath.

Without
computer 𝐵(𝑥) is
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Integer composition – with restriction

The GFs for 𝑥1, 𝑥2, 𝑥3 are

1 + 𝑥2 + 𝑥4 +⋯ = 1
1 − 𝑥2 , 1 + 𝑥 + 𝑥2 ⋯ = 1

1 − 𝑥, 1 + 𝑥 + 𝑥2

The GF for the solution is

1 + 𝑥 + 𝑥2

(1 − 𝑥)(1 − 𝑥2) = 1 + 𝑥 + 𝑥2

(1 + 𝑥)(1 − 𝑥)2

26



Partial fraction

We can further simplify to the form

1 + 𝑥 + 𝑥2

(1 + 𝑥)(1 − 𝑥)2 = 𝐴
1 + 𝑥 + 𝐵

1 − 𝑥 + 𝐶
(1 − 𝑥)2

form some constant 𝐴,𝐵,𝐶.

This implies

1 + 𝑥 + 𝑥2 = 𝐴(1 − 𝑥)2 +𝐵(1 − 𝑥2) + 𝐶(1 + 𝑥)

Equating coefficients on terms of equal degree

1 = 𝐴 +𝐵 + 𝐶, 1 = −2𝐴 + 𝐶, 1 = 𝐴 −𝐵.

Solving this gives

𝐴 = 1
4, 𝐵 = −3

4 , 𝐶 = 3
2
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Integer composition – with restriction

This simplifies to

So the coefficient of 𝑥𝑛 is

(−1)𝑛
4 − 3

4 + 3(𝑛 + 1)
2 .
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Integer composition – without restriction

This is the GF of distributing 𝑛 to any number of
(distinguishable) children, so no one has 0 .

1 + 𝑥
1 − 𝑥 + ( 𝑥

1 − 𝑥)
2
+ ( 𝑥

1 − 𝑥)
3
+⋯ = 1

1 − 𝑥
1−𝑥

= 1 − 𝑥
1 − 2𝑥.

Since
1 − 𝑥
1 − 2𝑥 = (∑

𝑛≥0
2𝑛𝑥𝑛)−(∑

𝑛≥0
2𝑛𝑥𝑛+1),

the coefficient of 𝑥𝑛 is 2𝑛−1 for 𝑛 ≥ 1.

By the balls and bars argument, this is 2𝑛−1 for 𝑛 ≥ 1. Why?
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Appendix



Self-study guide (for people who missed the class)

• Read textbook 8.1–8.4
• Watch online video lectures here.
• Recommended exercises Have a quick look of

• Textbook 8.9, 1–19 (Some solutions here)

30

http://pwp.gatech.edu/math3012openresources/lecture-videos/lecture-19/
https://people.math.gatech.edu/~trotter/math-3012/chapter8-solutions.pdf
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