8 – Generating Functions Part (1)

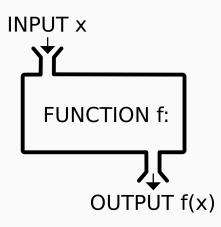
Combinatorics 1M020

Xing Shi Cai 12-02-2019

Department of Mathematics, Uppsala University, Sweden

Basic notion and terminology

A function can be seen a rule to convert input to output. (Just like a function in computer languages)



What is a GF (generating function)

Given an infinite sequence $\sigma=(a_0,a_1,\dots),$ we associate it with a "function" F(x) written as

$$F(x) = \sum_{n \ge 0} a_n x^n,$$

called the generating function of σ .

What is a GF (generating function)

Given an infinite sequence $\sigma=(a_0,a_1,\dots),$ we associate it with a "function" F(x) written as

$$F(x) = \sum_{n \ge 0} a_n x^n,$$

called the generating function of $\sigma.$

Warning 🔔

Very formally speaking, F(x) is not a function and we do not care if the sum converges.

We just pretend in this class that they are well-defined functions.

There are GFs that do not correspond to any function, e.g.,

If $a_0 = 1$ and $a_n = 0$ for all $n \ge 1$, then

$$F(x) = \sum_{n \ge 0} a_n x^n = 1.$$

If $a_0=1$ and $a_n=0$ for all $n\geq 1,$ then

$$F(x) = \sum_{n \ge 0} a_n x^n = 1.$$

If $a_n=1$ for all $n=0,\ldots,4,$ and $a_n=0$ for all $n\geq 5$ then

$$F(x) = 1 + x + x^{2} + x^{3} + x^{4} = \frac{1 - x^{5}}{1 - x}$$

If $a_0=1$ and $a_n=0$ for all $n\geq 1,$ then

$$F(x) = \sum_{n \ge 0} a_n x^n = 1.$$

If $a_n=1$ for all $n=0,\ldots,4,$ and $a_n=0$ for all $n\geq 5$ then

$$F(x) = 1 + x + x^{2} + x^{3} + x^{4} = \frac{1 - x^{5}}{1 - x}$$

If $a_n=1$ for all $n=0,\ldots,m,$ and $a_n=0$ for all $n\geq m+1$ then

$$F(x) = 1 + x + x^{2} + \dots + x^{m} = \frac{1 - x^{m+1}}{1 - x}$$

If $a_n = 1$ for all $n \ge 0$, then

$$F(x) = \sum_{n \ge 0} x^n = \frac{1}{1-x}$$

If $a_n = 1$ for all $n \ge 0$, then

$$F(x) = \sum_{n \ge 0} x^n = \frac{1}{1 - x}.$$

If $a_n = 1/n!$ for all $n \ge 0$, then

$$F(x) = \sum_{n \ge 0} \frac{1}{n!} x^n = e^x.$$

If $a_n = 1$ for all $n \ge 0$, then

$$F(x) = \sum_{n \ge 0} x^n = \frac{1}{1-x}$$

If $a_n=1/n!$ for all $n\geq 0,$ then

$$F(x) = \sum_{n \ge 0} \frac{1}{n!} x^n = e^x.$$

If $a_0=0$ and $a_n=1/n$ for all $n\geq 1,$ then

$$\sum_{n \ge 1} \frac{1}{n} x^n = -\log\left(\frac{1}{1-x}\right)$$

Quiz $\sum_{n\geq 0} \binom{m}{n} x^n = ?$

Quiz $\sum_{n\geq 0} \binom{m}{n} x^n = ?$ Quiz $\sum_{n\geq 0} \frac{1}{(2n)!} x^{2n} = ?$

Generating functions and combinatorics

Combinatorial Sum

Let $\mathcal A$ and $\mathcal B$ be two sets contains objects which has sizes, e.g.,

Combinatorial Sum

Let $\mathcal A$ and $\mathcal B$ be two sets contains objects which has sizes, e.g.,

Let a_n (b_n) be the number of objects of size n in \mathcal{A} (\mathcal{B}) . Let A(x) and B(x) be the GFs for a_n and b_n .

Combinatorial Sum

Let $\mathcal A$ and $\mathcal B$ be two sets contains objects which has sizes, e.g.,

Let a_n (b_n) be the number of objects of size n in \mathcal{A} (\mathcal{B}). Let A(x) and B(x) be the GFs for a_n and b_n . Punch line! – Then the GF for $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$ is

$$C(x) = A(x) + B(x) = \sum_{n \ge 0} a_n x^n + \sum_{n \ge 0} b_n x^n = \sum_{n \ge 0} (a_n + b_n) x^n$$

Combinatorial Sum – Example

In the example above, $a_n = 1 \mbox{ and } b_n = 2 \mbox{ for all } n.$ So

$$\begin{split} A(x) &= \sum_{n \geq 1} x^n = \frac{x}{1-x}, \\ B(x) &= \sum_{n \geq 1} 2x^n = 2\frac{x}{1-x}, \\ C(x) &= A(x) + B(x) = 3\frac{x}{1-x} = \sum_{n \geq 1} 3x^n. \end{split}$$

Combinatorial Product

Let ${\mathcal A}$ and ${\mathcal B}$ be two sets contains objects which has sizes, e.g.,

$$\begin{split} \mathcal{A} &= \left\{ \emptyset, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \overbrace{\texttt{s}}, \overbrace{\texttt{s}}, \overbrace{\texttt{s}}, \ldots \right\}, \quad \mathcal{B} &= \left\{ \emptyset, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \overbrace{\texttt{t}}, \ldots \right\}. \\ \mathcal{C} &= \mathcal{A} \times \mathcal{B} = \left\{ (\emptyset, \emptyset), (\emptyset, \textcircled{\texttt{t}}), (\overbrace{\texttt{s}}, \emptyset), (\emptyset, \textcircled{\texttt{t}}, \overbrace{\texttt{t}}), (\overbrace{\texttt{s}}, \emptyset), (\overbrace{\texttt{s}}, \underbrace{\texttt{t}}), \ldots \right\}. \end{split}$$

Combinatorial Product

Let ${\mathcal A}$ and ${\mathcal B}$ be two sets contains objects which has sizes, e.g.,

$$\begin{split} \mathcal{A} &= \left\{ \emptyset, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \overbrace{\texttt{s}}, \overbrace{\texttt{s}}, \ldots \right\}, \quad \mathcal{B} &= \left\{ \emptyset, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \textcircled{\texttt{t}}, \overbrace{\texttt{t}}, \overbrace{\texttt{t}}, \ldots \right\}. \\ \mathcal{C} &= \mathcal{A} \times \mathcal{B} = \left\{ (\emptyset, \emptyset), (\emptyset, \textcircled{\texttt{t}}), (\textcircled{\texttt{s}}, \emptyset), (\emptyset, \textcircled{\texttt{t}}, \overbrace{\texttt{t}}), (\textcircled{\texttt{s}}, 0), (\textcircled{\texttt{s}}, \cancel{t}), \ldots \right\}. \end{split}$$

Let a_n (b_n) be the number of objects of size n in \mathcal{A} (\mathcal{B}) . Let A(x) and B(x) be the GFs for a_n and b_n .

Combinatorial Product

Let $\mathcal A$ and $\mathcal B$ be two sets contains objects which has sizes, e.g.,

$$\begin{split} \mathcal{A} &= \left\{ \emptyset, \textcircled{\texttt{s}}, \texttt{s}, \texttt{$$

Let a_n (b_n) be the number of objects of size n in \mathcal{A} (\mathcal{B}). Let A(x) and B(x) be the GFs for a_n and b_n .

Punch line! – Then the GF for $\mathcal{C} = \mathcal{A} \times \mathcal{B}$ is

$$\begin{split} C(x) &= A(x)B(x) = \left(\sum_{n\geq 0} a_n x^n\right) \left(\sum_{n\geq 0} b_n x^n\right) \\ &= \sum_{n\geq 0} \left(\sum_{k=0}^n a_k b_{n-k}\right) x^n \end{split}$$

Newton's Binomial Theorem

For integers $n\geq m\geq 0,$ we have defined that

$$\binom{n}{m} = \frac{P(n,m)}{m!} = \frac{n(n-1)(n-2)\dots(n-m+1)}{m!}$$

For integers $n \ge m \ge 0$, we have defined that

$$\binom{n}{m} = \frac{P(n,m)}{m!} = \frac{n(n-1)(n-2)\dots(n-m+1)}{m!}$$

But let's be crazier and let $r\in\mathbb{R}$ and $k\in\mathbb{Z}$ and define

$$\binom{r}{k} = \begin{cases} \frac{r(r-1)(r-2)\dots(r-k+1)}{k!} & k > 0, \\ 1 & k = 0, \\ 0 & k < 0. \end{cases}$$

Extend the definition of $\binom{r}{k}$

$$\binom{r}{k} = \begin{cases} \frac{r(r-1)(r-2)\dots(r-k+1)}{k!} & k > 0, \\ 1 & k = 0, \\ 0 & k < 0. \end{cases}$$

Extend the definition of $\binom{r}{k}$

$$\binom{r}{k} = \begin{cases} \frac{r(r-1)(r-2)\dots(r-k+1)}{k!} & k > 0, \\ 1 & k = 0, \\ 0 & k < 0. \end{cases}$$

For integers $k > r \ge 0$, $\binom{r}{k} = 0$ – there is no way to choose 5 \ge out of 3 \ge .

For integers $r \ge 0$ and k < 0, $\binom{r}{k} = 0$ – there is no way to choose -1 \ge out of 3 \ge .

If k = 0, $\binom{r}{0} = 1$ – there is one way to choose 0 \ge (do nothing)

Extend the definition of $\binom{r}{k}$

$$\binom{r}{k} = \begin{cases} \frac{r(r-1)(r-2)\dots(r-k+1)}{k!} & k > 0, \\ 1 & k = 0, \\ 0 & k < 0. \end{cases}$$

For integers $k > r \ge 0$, $\binom{r}{k} = 0$ – there is no way to choose 5 \ge out of 3 \ge .

For integers $r \ge 0$ and k < 0, $\binom{r}{k} = 0$ – there is no way to choose -1 \ge out of 3 \ge .

If k = 0, $\binom{r}{0} = 1$ - there is one way to choose $0 \ge (\text{do nothing})$ **Example** $\binom{-7/2}{5} = \frac{(-7/2)(-9/2)(-11/2)(-13/2)(-15/2)}{5!}.$

Quiz

How is 2^{π} defined?

Quiz

How is 2^{π} defined?

Theorem 8.10

For all $p \in \mathbb{R}$ with $p \neq 0$,

$$(1+x)^p = \sum_{n \ge 0} \binom{p}{n} x^n$$

Quiz

How is 2^{π} defined?

Theorem 8.10

For all $p \in \mathbb{R}$ with $p \neq 0$,

$$(1+x)^p = \sum_{n \ge 0} \binom{p}{n} x^n$$

When $p \in \mathbb{N}$, this is just binomial theorem.

Proof by taking the Taylor expansion of $(1+x)^p$ at x=0.

Combinatorial Product – revisited

The sets

$$\begin{split} \mathcal{A} &= \left\{ \emptyset, \textcircled{\texttt{S}}, \textcircled{\texttt{S}}, \textcircled{\texttt{S}}, \textcircled{\texttt{S}}, \textcircled{\texttt{S}}, \ldots \right\}, \quad \mathcal{B} &= \left\{ \emptyset, \textcircled{\texttt{0}}, \textcircled{\texttt{0}}, \textcircled{\texttt{0}}, \textcircled{\texttt{0}}, \textcircled{\texttt{0}}, \ldots \right\}. \\ \mathcal{C} &= \mathcal{A} \times \mathcal{B} = \left\{ (\emptyset, \emptyset), (\emptyset, \textcircled{\texttt{0}}), (\textcircled{\texttt{S}}, \emptyset), (\emptyset, \textcircled{\texttt{0}}, \textcircled{\texttt{0}}), (\textcircled{\texttt{S}}, \emptyset), (\textcircled{S}, \emptyset)$$

Combinatorial Product – revisited

The sets $\begin{aligned} \mathcal{A} &= \left\{ \emptyset, \blacksquare, \blacksquare \blacksquare, \blacksquare \blacksquare, \blacksquare \blacksquare, \ldots \right\}, \quad \mathcal{B} &= \left\{ \emptyset, \bigstar, \bigstar, \bigstar, \bigstar, \bigstar, \ldots \right\}. \\ \mathcal{C} &= \mathcal{A} \times \mathcal{B} &= \left\{ (\emptyset, \emptyset), (\emptyset, \bigstar), (\blacksquare, \emptyset), (\emptyset, \bigstar, \bigstar), (\blacksquare \blacksquare, \emptyset), (\blacksquare, \bigstar), \ldots \right\}. \end{aligned}$

The GF

$$A(x) = \frac{1}{1-x}, \quad B(x) = \frac{1}{1-x}, \quad C(x) = \left(\frac{1}{1-x}\right)^2$$

Combinatorial Product – revisited

The sets

$$\begin{split} \mathcal{A} &= \left\{ \emptyset, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \textcircled{\texttt{s}}, \overbrace{\texttt{s}}, \overbrace{\texttt{s}}, \ldots \right\}, \quad \mathcal{B} &= \left\{ \emptyset, \textcircled{\texttt{o}}, \textcircled{\texttt{o}}, \textcircled{\texttt{o}}, \textcircled{\texttt{o}}, \textcircled{\texttt{o}}, \overbrace{\texttt{o}}, \ldots \right\}. \\ \mathcal{C} &= \mathcal{A} \times \mathcal{B} = \left\{ (\emptyset, \emptyset), (\emptyset, \textcircled{\texttt{o}}), (\textcircled{\texttt{s}}, \emptyset), (\emptyset, \textcircled{\texttt{o}}, \textcircled{\texttt{o}}), (\textcircled{\texttt{s}}, \emptyset), (\textcircled{\texttt{s}}, 0), (\textcircled{s$$

The GF

$$A(x) = \frac{1}{1-x}, \quad B(x) = \frac{1}{1-x}, \quad C(x) = \left(\frac{1}{1-x}\right)^2$$

By Newton's binomial theorem

$$C(x) = \sum_{n \ge 0} \binom{-2}{n} (-x)^n$$

and

$$[x^n]C(x) = (-1)^n \frac{(-2)(-3) \dots (-2 - n + 1)}{n!} = \frac{(n+1)!}{n!} = n + 1$$

Applying Newton's Binomial Theorem

Lemma 8.12

For all integers $m \ge 0$,

$$\binom{-1/2}{m} = (-1)^m \frac{\binom{2m}{m}}{2^{2m}}$$

Proof by induction. Quiz What is $\binom{-1/2}{0}$?

Applying Newton's Binomial Theorem

Lemma 8.12

For all integers $m \ge 0$,

$$\binom{-1/2}{m} = (-1)^m \frac{\binom{2m}{m}}{2^{2m}}$$

Proof by induction. Quiz What is $\binom{-1/2}{0}$?

$$\begin{pmatrix} -1/2 \\ m+1 \end{pmatrix} = \frac{P(-1/2, m+1)}{(m+1)!} = \frac{P(-1/2, m)(-1/2 - m)}{(m+1)m!}$$
$$= \frac{-1/2 - m}{m+1} \binom{-1/2}{m} = (-1)\frac{2m+1}{2(m+1)} (-1)^m \frac{\binom{2m}{m}}{2^{2m}}$$
$$= (-1)^{m+1} \frac{1}{2^{2m}} \frac{(2m+2)(2m+1)}{(2m+2)2(m+1)} \binom{2m}{m} = (-1)^{m+1} \frac{\binom{2m+2}{m+2}}{2^{2m+2}}.$$

Applying Newton's Binomial Theorem

Theorem 8.13

$$\frac{1}{\sqrt{1-4x}} = \sum_{n \ge 0} \binom{2n}{n} x^n.$$

$$(1-4x)^{-1/2} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} (-4x)^n$$
$$= \sum_{n=0}^{\infty} (-1)^n 2^{2n} {\binom{-1/2}{n}} x^n$$
$$= \sum_{n=0}^{\infty} {\binom{2n}{n}} x^n.$$

Does this ring a bell?

Applying Newton's Binomial Theorem

Quiz - Corollary 8.14

Use

$$\frac{1}{\sqrt{1-4x}} = \sum_{n \ge 0} \binom{2n}{n} x^n$$

to show that for all integers $n\geq 0$

$$2^{2n} = \sum_{k \ge 0} \binom{2k}{k} \binom{2n-2k}{n-k}.$$

Another look at Amanda's money

Give $1 \blacksquare$ to k child

The ways to give set to 1 child forms the set

$$\mathcal{A} = \{$$
 \$ \$ \$ \$ \$ \$ \$ \$... $\}$

The ways to give so to 1 child forms the set

$$\mathcal{A} = \left\{\texttt{S},\texttt{S},\texttt{S},\texttt{S},\texttt{S},\ldots\right\}$$

Since there are $a_n=1$ way to distribute n among 1 child so the child has >0 . , the GF of $\mathcal A$ is

$$A(x) = x + x^2 + x^3 + \dots = \frac{x}{1 - x}$$

Note $a_0 = 0$.

The ways to give set to 1 child forms the set

¢

$$\mathcal{A} = egin{smallmatrix} $\$$, $\$$, $\$$, ... egin{smallmatrix} $\$$, $\$$, $... egin{smallmatrix} $\$$, ... egin{smallmatrix} $\$$, ... egin{smallmatrix} $\$$, $\$$, $... egin{smallmatrix} $\$$, $\$$, $\$$, $100 \ $1$$

Since there are $a_n=1$ way to distribute n among 1 child so the child has >0 such that GF of $\mathcal A$ is

$$A(x) = x + x^2 + x^3 + \dots = \frac{x}{1 - x}$$

Note $a_0 = 0$.

So \mathcal{A}^k contains the ways to distribute n among k children. Its GF is

$$A(x)^k = \left(\frac{x}{1-x}\right)^k$$

Quiz

What is the combinatorial meaning of the coefficient of \boldsymbol{x}^6 in

$$(x+x^2\dots)(x+x^2\dots)(x+x^2\dots)(x+x^2\dots)(x+x^2\dots)(x+x^2\dots) = \frac{x^5}{(1-x)^5}$$

Quiz

What is the combinatorial meaning of the coefficient of x^6 in

$$(x + x^2 \dots)(x + x^2 \dots)(x + x^2 \dots)(x + x^2 \dots)(x + x^2 \dots) = \frac{x^5}{(1 - x)^5}$$

It is the number of ways to distribute 6 $^{\blacksquare}$ among 5 children so everyone has >0 $^{\blacksquare}$

I.e., $\binom{5}{4} = 5$ by the balls and bars argument.

Use SageMath, it is also easy to see that it is 5, and in general, the coefficient of x^{n+1} is $\binom{n}{4}.$

Use SageMath, it is also easy to see that it is 5, and in general, the coefficient of x^{n+1} is $\binom{n}{4}$.

To get this without computer or combinatorics

$$\frac{x^5}{(1-x)^5} = \frac{x^5}{4!} \frac{d^4}{dx^4} \left(\frac{1}{1-x}\right) = \frac{x^5}{4!} \sum_{n=0}^{\infty} n(n-1)(n-2)(n-3)x^{n-4}$$
$$= \sum_{n=0}^{\infty} \frac{n(n-1)(n-2)(n-3)}{4!} x^{n+1} = \sum_{n=0}^{\infty} \binom{n}{4} x^{n+1}.$$

How many ways can we distribute 5 so to 3 children, allowing a child to have 0 so ?

The trick is to use bars and balls with three extra 💷, e.g.,

This example gives the children 3, 4, 1 **Solution**

How many ways can we distribute 5 so to 3 children, allowing a child to have 0 so ?

The trick is to use bars and balls with three extra 💷, e.g.,

\$ \$ \$ \$ \$ \$ \$ \$

This example gives the children 3, 4, 1 such that the second s

But then we just take back one set from each child, so they get 2, 3, 0 set.

So the answer is $\binom{8}{2}$.

How many ways can we distribute $n \le k$ children, allowing a child to have $0 \le ?$

The trick is to add k extra \blacksquare .

Then we distribute it by inserting k-1 bars among the $n+k-1\,$ gaps.

In the end, we take back one 💷 from each child.

So there this is in total $\binom{n+k-1}{k-1}$ ways to do so.

Give $n \blacksquare$ to k children allowing empty hands

 $(1-x)^{-n}$ is GF for \mathcal{A}^n with

$$\mathcal{A} = \left\{ \emptyset, \$, \$, \$, \$, \$, \$, \ldots \right\},$$

 $[x^k](1-x)^{-n}$ is the number of ways to distribute n one-dollar bills to k children, allowing children to have no money.

Give $n \blacksquare$ to k children allowing empty hands

 $(1-x)^{-n}$ is GF for \mathcal{A}^n with

$$\mathcal{A} = \left\{ \emptyset, \$, \$, \$, \$, \$, \$, \ldots \right\},$$

 $[x^k](1-x)^{-n}$ is the number of ways to distribute n one-dollar bills to k children, allowing children to have no money. By the bars and balls argument, this is $\binom{n+k-1}{k-1}$ for $k \ge 1$. So

$$\frac{1}{(1-x)^n} = 1 + \sum_{k \ge 1} \binom{n+k-1}{k-1} x^k.$$

Give $n \blacksquare$ to k children allowing empty hands

 $(1-x)^{-n}$ is GF for \mathcal{A}^n with

$$\mathcal{A} = \left\{ \emptyset, \$, \$, \$, \$, \$, \ldots \right\},$$

 $[x^k](1-x)^{-n}$ is the number of ways to distribute n one-dollar bills to k children, allowing children to have no money. By the bars and balls argument, this is $\binom{n+k-1}{k-1}$ for $k \ge 1$. So

$$\frac{1}{(1-x)^n} = 1 + \sum_{k \ge 1} \binom{n+k-1}{k-1} x^k.$$

Or by Newton's binomial theorem

$$\frac{1}{(1-x)^n} = \sum_{k\geq 0} \binom{-n}{k} (-1)^k x^k$$

Example 8.5

A grocery store is preparing holiday fruit baskets for sale. Each fruit basket will have 20 pieces of fruit in it, chosen from (),),),), and). How many different ways can such a basket be prepared if there must be at least one apple in a basket, a basket cannot contain more than three pears, and the number of) must be a multiple of four?

Let

$$\begin{aligned} \mathcal{A} &= \left\{ \emptyset, \emptyset \emptyset, \emptyset \emptyset \emptyset, \dots \right\}, \quad \mathcal{P} &= \left\{ \emptyset, \flat, \flat \flat, \flat \flat \flat \right\}, \\ \mathcal{O} &= \left\{ \emptyset, \flat \flat \flat \flat, \flat \flat \flat \flat, \dots \right\}, \\ \mathcal{G} &= \left\{ \emptyset, \flat, \flat \flat, \flat \flat \flat, \dots \right\}, \end{aligned}$$

What is the number of objects in $\mathcal{B} = \mathcal{A} \times \mathcal{P} \times \mathcal{O} \times \mathcal{G}$ of size 20?

Let

$$\begin{aligned} \mathcal{A} &= \left\{ \emptyset, \emptyset \emptyset, \emptyset \emptyset \emptyset, \dots \right\}, \quad \mathcal{P} &= \left\{ \emptyset, \flat, \flat \flat, \flat \flat \flat \right\}, \\ \mathcal{O} &= \left\{ \emptyset, \flat \flat \flat \flat, \flat \flat \flat \flat, \dots \right\}, \\ \mathcal{G} &= \left\{ \emptyset, \flat, \flat \flat, \flat \flat \flat, \dots \right\}, \end{aligned}$$

What is the number of objects in $\mathcal{B}=\mathcal{A}\times\mathcal{P}\times\mathcal{O}\times\mathcal{G}$ of size 20?

Quiz

What is the GF for pears?

The GFs are

$$\begin{split} A(x) &= x + x^2 + x^3 \dots = \frac{x}{1-x}, \quad P(x) = 1 + x + x^2 + x^3, \\ O(x) &= 1 + x^4 + x^8 \dots = \frac{1}{1-x^4}, \\ G(x) &= 1 + x + x^2 + x^3 \dots = \frac{1}{1-x}. \end{split}$$

The GFs are

$$\begin{split} A(x) &= x + x^2 + x^3 \dots = \frac{x}{1 - x}, \quad P(x) = 1 + x + x^2 + x^3, \\ O(x) &= 1 + x^4 + x^8 \dots = \frac{1}{1 - x^4}, \\ G(x) &= 1 + x + x^2 + x^3 \dots = \frac{1}{1 - x}. \end{split}$$

The GF of \mathcal{B} (baskets) is

$$B(x) = A(x)P(x)O(x)G(x)$$

Fruit basket

So the answer is

$$x^{20}]B(x) = 210,$$

and $[x^n]B(x) = n(n+1)/2$ – pretty easy by SageMath.

So the answer is

$$[x^{20}]B(x) = 210,$$

and $[x^n]B(x)=n(n+1)/2$ – pretty easy by SageMath. Without computer B(x) is

$$\frac{x}{1-x}(1+x+x^2+x^3)\frac{1}{1-x^4}\frac{1}{1-x} = \frac{x}{(1-x)^2(1-x^4)}(1+x+x^2+x^3).$$
$$\frac{x}{(1-x)^3} = \frac{x}{2}\sum_{n=0}^{\infty}n(n-1)x^{n-2} = \sum_{n=0}^{\infty}\frac{n(n-1)}{2}x^{n-1}$$

Example 8.6. Find the number of integer solutions to the equation

$$x_1 + x_2 + x_3 = n$$

 $(n \ge 0 \text{ an integer})$ with $x_1 \ge 0$ even, $x_2 \ge 0$, and $0 \le x_3 \le 2$.

The GFs for x_1, x_2, x_3 are

$$1 + x^2 + x^4 + \dots = \frac{1}{1 - x^2}, \quad 1 + x + x^2 \dots = \frac{1}{1 - x}, \quad 1 + x + x^2$$

The GF for the solution is

$$\frac{1+x+x^2}{(1-x)(1-x^2)} = \frac{1+x+x^2}{(1+x)(1-x)^2}$$

Partial fraction

We can further simplify to the form

$$\frac{1+x+x^2}{(1+x)(1-x)^2} = \frac{A}{1+x} + \frac{B}{1-x} + \frac{C}{(1-x)^2}$$

form some constant A, B, C.

Partial fraction

We can further simplify to the form

$$\frac{1+x+x^2}{(1+x)(1-x)^2} = \frac{A}{1+x} + \frac{B}{1-x} + \frac{C}{(1-x)^2}$$

form some constant A, B, C. This implies

$$1+x+x^2=A(1-x)^2+B(1-x^2)+C(1+x)$$

Partial fraction

We can further simplify to the form

$$\frac{1+x+x^2}{(1+x)(1-x)^2} = \frac{A}{1+x} + \frac{B}{1-x} + \frac{C}{(1-x)^2}$$

form some constant A, B, C. This implies

$$1+x+x^2=A(1-x)^2+B(1-x^2)+C(1+x)$$

Equating coefficients on terms of equal degree

$$1 = A + B + C$$
, $1 = -2A + C$, $1 = A - B$.

Solving this gives

$$A = \frac{1}{4}, \quad B = \frac{-3}{4}, \quad C = \frac{3}{2}$$

This simplifies to

$$\frac{1}{4}\frac{1}{1+x} - \frac{3}{4}\frac{1}{1-x} + \frac{3}{2}\frac{1}{(1-x)^2}$$
$$= \frac{1}{4}\sum_{n=0}^{\infty} (-1)^n x^n - \frac{3}{4}\sum_{n=0}^{\infty} x^n + \frac{3}{2}\sum_{n=0}^{\infty} nx^{n-1}.$$

So the coefficient of x^n is

$$\frac{(-1)^n}{4} - \frac{3}{4} + \frac{3(n+1)}{2}$$

This is the GF of distributing $n \equiv 1$ to any number of (distinguishable) children, so no one has $0 \equiv 1$.

$$1 + \frac{x}{1-x} + \left(\frac{x}{1-x}\right)^2 + \left(\frac{x}{1-x}\right)^3 + \dots = \frac{1}{1-\frac{x}{1-x}} = \frac{1-x}{1-2x}$$

This is the GF of distributing $n \equiv$ to any number of (distinguishable) children, so no one has $0 \equiv$.

$$1 + \frac{x}{1-x} + \left(\frac{x}{1-x}\right)^2 + \left(\frac{x}{1-x}\right)^3 + \dots = \frac{1}{1 - \frac{x}{1-x}} = \frac{1-x}{1-2x}$$

Since

$$\frac{1-x}{1-2x} = \left(\sum_{n\geq 0} 2^n x^n\right) - \left(\sum_{n\geq 0} 2^n x^{n+1}\right),$$

the coefficient of x^n is 2^{n-1} for $n \ge 1$.

This is the GF of distributing $n \equiv$ to any number of (distinguishable) children, so no one has $0 \equiv$.

$$1 + \frac{x}{1-x} + \left(\frac{x}{1-x}\right)^2 + \left(\frac{x}{1-x}\right)^3 + \dots = \frac{1}{1 - \frac{x}{1-x}} = \frac{1-x}{1-2x}$$

Since

$$\frac{1-x}{1-2x} = \left(\sum_{n\geq 0} 2^n x^n\right) - \left(\sum_{n\geq 0} 2^n x^{n+1}\right),$$

the coefficient of x^n is 2^{n-1} for $n \ge 1$.

By the balls and bars argument, this is 2^{n-1} for $n \ge 1$. Why?

Appendix

- Read textbook 8.1–8.4
- Watch online video lectures here.
- Recommended exercises Have a quick look of
 - Textbook 8.9, 1–19 (Some solutions here)