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Basic notion and terminology



Review — What is a function?

A function can be seen a rule to convert input to output. (Just like
a function in computer languages)

INPUT x
“(
FUNCTION f:

)L

OUTPUT f(x)




What is a GF (generating function)

Given an infinite sequence o = (ag, ay, ... ), we associate it with a
“function” F'(x) written as
F(z)=) apa",
n>0

called the generating function of o.



What is a GF (generating function)

Given an infinite sequence o = (ag, ay, ... ), we associate it with a

“function” F'(x) as
F(x) = Z a,x",
n>0
called the of o.
!
Very formally speaking, F(x) is a function and we do

care if the sum converges.
We just pretend in this class that they are well-defined functions.

There are GFs that do not correspond to any function, e.g.,

Z nlz™.

n>0



Examples of GF

If ag =1 and a,, =0 for all n > 1, then

F(z) = Zanx” = IL.

n>0



Examples of GF

If ag =1 and a,, =0 for all n > 1, then

F(z) = Zanx” = IL.

n>0

If a, =1foralln=0,...,4, and a,, = 0 for all n > 5 then

2 3 g 1-2a°
Flg)=1+z+z°+2°+ 2= =

1—2x



Examples of GF

If ag =1 and a,, =0 for all n > 1, then

F(z) = Zanx” = IL.

n>0

If a, =1foralln=0,...,4, and a,, = 0 for all n > 5 then

0, 3, 4_1—a
Flx)=14zxz+z°+z°+z* = 1
—z
If a,, =1 foralln=0,...,m, and a,, = 0 for all n > m + 1 then
1_xm+1

Fz)=1+z+2?+ - +2™ = T



Examples of GF

If a,, =1 for all n > 0, then




Examples of GF

If a,, =1 for all n > 0, then




Examples of GF

If a,, =1 for all n > 0, then

If ay =0 and a,, = 1/n for all n > 1, then

le”——b( ! )
n a & 1—=x

n>1




Examples of GF



Examples of GF




Generating functions and
combinatorics



Combinatorial Sum

Let A and B be two sets contains objects which has sizes, e.g.,

/[:{s O IRE }

) ) ) )

B:{"\ 7“7\ \ "“7\ \ \ ’.”}'
C=AUB={®,9,0,66, 90,550 ¢@O®, vy, m=mn.. }.



Combinatorial Sum

Let A and B be two sets contains objects which has sizes, e.g.,

/[:{s O IRE }

) ) ) )

B:{"\ 7“7\ \ "“7\ \ \ ’.”}'
C=AUB={®,9,0,66, 90,550 ¢@O®, vy, m=mn.. }.

Let a,, (b,,) be the number of objects of size n in A (B).

Let A(x) and B(z) be the GFs for a,, and b,,.



Combinatorial Sum

Let A and B be two sets contains objects which has sizes, e.g.,

/[:{s O IRE }

) ) 9 )

B:{"\ 7“7\ \ "“7\ \ \ ’.”}'
C=AUB={®,9,0,66, 90,550 ¢@O®, vy, m=mn.. }.

Let a,, (b,,) be the number of objects of size n in A (B).
Let A(x) and B(z) be the GFs for a,, and b,,.
Punch line! — Then the GF for € = AU B is

n>0 n>0 n>0



Combinatorial Sum — Example

/[:{s O IE }

) ) b )

CES{ AN | BN [ [ Bl Ry
C=AUB={€,9,0.¢@. o, 0 $O®, oy, =mm. . }.

In the example above, a,, =1 and b, = 2 for all n. So

n>1
X
B(x) :;2:13 :21—m’
£ n
C() = A(w) + B(z) = 37— => 3z



Combinatorial Product

Let A and B be two sets contains objects which has sizes, e.g.,

A={),m mmmsmsn ) B={)@ 00 00, .. .
C=AxB={0,0),0 @), ™0, 0 @@, w0, cn@),..}.



Combinatorial Product

Let A and B be two sets contains objects which has sizes, e.g.,

A={),m mmmsmsn ) B={)@ 00 00, .. .
C=AxB={0,0),0 @), ™0, 0 @@, w0, cn@),..}.

Let a,, (b,) be the number of objects of size n in A (B).

Let A(z) and B(z) be the GFs for a,, and b,,.



Combinatorial Product

Let A and B be two sets contains objects which has sizes, e.g.,

A={),m mmmsmsn ) B={)@ 00 00, .. .
C=AxB={0,0),0 @), ™0, 0 @@, w0, cn@),..}.

Let a,, (b,) be the number of objects of size n in A (B).
Let A(z) and B(z) be the GFs for a,, and b,,.
Punch line! — Then the GF for € = A x B is

C(z) = A(x)B(x) = (Z an:z:") (Z bn:z:")

n>0 n>0

= (; akbnk) "

n>0



Newton’s Binomial Theorem



Extend the definition of (})

For integers n > m > 0, we have defined that

(n) P(n,m) n(n—1)(n—2)..(n—m+1)

m

m)! m)!



Extend the definition of (})

For integers n > m > 0, we have defined that

(n) P(n,m) n(n—1)(n—2)..(n—m+1)

m m)! m!

But let's be crazier and let » € R and k € Z and define

r(r—1)(r—2)...(r—k+1) E>0

k!
"1 =41 k=0
0

k <O0.




Extend the definition of (})

r(r—1)(r—2)...(r—k+1) k> O,

k!
1= k=0
(+) -0

0 k <O0.

10



Extend the definition of (})

r(v‘fl)(r*i)!“.(rkarl) k> O,

") =41 k=0
k‘_ — Yy

0 k <O0.

For integers k > r >0, (;) = 0 — there is no way to choose 5 .

out of 3 ..

For integers 7 > 0 and k < 0, (;) = 0 — there is no way to choose
-1 outof 3. .

If k=0, (;) =1 - there is one way to choose 0 .. (do nothing)

10



Extend the definition of (;)

7'(7‘71)(7*7?!4..(7'7/@4&) k> 0,

") ={1 k=0
k’_ = Uy

0 k <O0.

For integers k > r >0, (;) = 0 — there is no way to choose 5 .
out of 3 ..

For integers 7 > 0 and k < 0, (;) = 0 — there is no way to choose
-1 outof 3. .

If k=0, (;) =1 - there is one way to choose 0 .. (do nothing)

Example

(-7/2) _ (=7/2)(=9/2)(=11/2)(=13/2)(=15/2)
5 5!

10



Newton’s Binomial Theorem

How is 2™ defined?

11



Newton’s Binomial Theorem

How is 2™ defined?

Theorem 8.10
For all p € R with p # 0,

L+ap=) (Z)x”

n>0

11



Newton’s Binomial Theorem

How is 2™ defined?

Theorem 8.10
For all p € R with p # 0,

L+ap=) (Z)x"

n>0

When p € N, this is just binomial theorem.

Proof by taking the Taylor expansion of (14 z)P at = = 0.

11



Combinatorial Product — revisited

The sets

A= {0, mm msmem, . L, B3={0,0, 90,006, ..}.
C=AxB= { (©,0), (0, @), (59,0), (0, O@), (8, 0), (50, @), ... }.

12



Combinatorial Product — revisited

The sets

A= {0, mm msmem, . L, B3={0,0, 90,006, ..}.
C=AxB= { (©,0), (0, @), (59,0), (0, O@), (8, 0), (50, @), ... }.

The GF

12



Combinatorial Product — revisited

The sets

'/l_{(b o, B , s ¢ a"'}a BZ{®7‘7“7“‘7}
C=AxB= { (©,0), (0, @), (59,0), (0, O@), (8, 0), (50, @), ... }.

The GF

and

12



Applying Newton’s Binomial Theorem

Lemma 8.12
For all integers m > 0,

(%) = (n)

m

Proof by induction. What is (71/%)?

13



Applying Newton’s Binomial Theorem

Lemma 8.12
For all integers m > 0,

Proof by induction. What is (71/%)?

(—1/2 ) _ P(=1/2,m+1) _ P(=1/2,m)(=1/2 = m)

m+1 (m+1)! (m +1)m!
Cc12-m(-172\ o 2m+1 ()
T om+1 (m )_(_1)2(m+1)(_) 22m

et 1 (2m+2><2m+1)( ) 1 )m+1(2$fzz)

=D S G 22 1) 22m+2

13



Applying Newton’s Binomial Theorem

Theorem 8.13
V1—4x Z ( )

(1-42)71/2 = i (‘11/ 2)(—4x)”

n=0
— Z(_l)n22n (_11/2 )xn

0

=
1l

M2

)

Does this ring a bell? 14

N
Il
o



Applying Newton’s Binomial Theorem

Use
<2n) .
VA 1 — 4m 70

to show that for all integers n. > 0

=2 ()(5F)

k>0

15



Another look at Amanda’s money




Give 1 B8 to £k child

The ways to give 87 to 1 child forms the set

_/[:{s sk sH) (sH s s }
) ) AR

16



Give 1 to % child

The ways to give 87 to 1 child forms the set
_/[:{s sHshslosh s 7}

Since there are a,, = 1 way to distribute n ¥ among 1 child so the
child has > 0 8 | the GF of A is

X

Alz) — 2 34 .. —
() =x+z°+2°+ -

Note ay = 0.

16



Give 1 to % child

The ways to give 87 to 1 child forms the set
_/[:{s sHshslosh s 7}

Since there are a,, = 1 way to distribute n ¥ among 1 child so the
child has > 0 8 | the GF of A is

X

Alz) — 2 34 .. —
() =x+z°+2°+ -

Note ay = 0.

So A" contains the ways to distribute n ¥ among k children. Its
GF is

16



Give n to 5 child

What is the combinatorial meaning of the coefficient of 26 in

(z+22.)(z+z?. )(z+2?..)(z+2?.. )(z+22...) =

17



Give n to 5 child

What is the combinatorial meaning of the coefficient of 26 in

5

X

@tot. Yo+ Yatet et Y ate ) = s

It is the number of ways to distribute 6 ¥ among 5 children so

everyone has > (0 &

le., (i) = 5 by the balls and bars argument.

s B sm fsmem ) s Ps

17



Give n to 5 child

Use SageMath, it is also easy to see that it is 5, and in general, the

coefficient of 11 is (Z)

18



Give n to 5 child

Use SageMath, it is also easy to see that it is 5, and in general, the

coefficient of 11 is (Z)

To get this without computer or combinatorics

x5 x5 g4 ( 1 ): Z—TZn(n—l)(n—z)(n—S)X”“*

(1-x)5 4 dx*\1-x g
o =Dm=-2)n=-3) 1 (1)
=3 i > A
n=0 n=0

18



Give 5 B to 3 children allowing empty hands

How many ways can we distribute 5 587 to 3 children, allowing a
child to have 0 8877

The trick is to use bars and balls with three extra &1, e.g.,

SN EH GH ) shEmEmEm 6
This example gives the children 3,4, 1 &,

19



Give 5 B to 3 children allowing empty hands

How many ways can we distribute 5 587 to 3 children, allowing a
child to have 0 8877

The trick is to use bars and balls with three extra &1, e.g.,
5l G B u 5 0E NEE MG n $
This example gives the children 3,4, 1 &,

But then we just take back one 581 from each child, so they get
2,3,0 &M,

So the answer is (3).

19



Give n B to k children allowing empty hands

How many ways can we distribute n 887 to k children, allowing a
child to have 0 &7

The trick is to add &k extra 58,

Then we distribute it by inserting k — 1 bars among the n + k — 1
gaps.
In the end, we take back one 581 from each child.

n+k—1

So there this is in total (", "]

) ways to do so.

20



Give n B to k children allowing empty hands

(1 —2) ™ is GF for A™ with
/[:{Q)?s Jshsh sl s 7___}7

[#¥](1 — 2)~™ is the number of ways to distribute n one-dollar bills

to k children, allowing children to have no money.

21



Give n B to k children allowing empty hands

(1 —2) ™ is GF for A™ with
/[:{Q)?s Jshsh sl s 7___}7

[#¥](1 — 2)~™ is the number of ways to distribute n one-dollar bills
to k children, allowing children to have no money. By the bars and
balls argument, this is ("%, ") for k > 1. So

M_1+Z(n+k—1) 5

k>1

21



Give n B to k children allowing empty hands

(1 —2) ™ is GF for A™ with
/[:{Q)?s Jshsh sl s 7___}7

[#¥](1 — 2)~™ is the number of ways to distribute n one-dollar bills
to k children, allowing children to have no money. By the bars and
balls argument, this is ("%, ") for k > 1. So

M_1+Z(n+k—1) 5

k>1

Or by Newton's binomial theorem
1 -
— = = -1 k..k
)

21



Example 8.5

A grocery store is preparing holiday fruit baskets for sale. Each
fruit basket will have 20 pieces of fruit in it, chosen from ¥ O,
™, and @. How many different ways can such a basket be
prepared if there must be at least one apple in a basket, a basket
cannot contain more than three pears, and the number of [

must be a multiple of four?

22



Fruit basket — Equivalent problem

Let

‘/l:{"“v“"}’ ?:{®7\ a\ \ 7\ ») }7

0_{®~(~4'~(~' P S VS Y Y Yy }
- ) ) vt f

5=1{0,8 08 888, .},

What is the number of objects in B =4 x P x O x G of size 207

23



Fruit basket — Equivalent problem

Let

A:{‘a“a“‘v}a ?:{®7\ a\ \ 7\ ») }7

0:{®7~(~r~(~r 7~(~r~(~r~(~e~(~e 7“.}7
5={0.8 88 888, .. |
What is the number of objects in B =4 x P x O x G of size 207

Quiz
What is the GF for pears?

23



The GFs are
A(x)=x+m2+x3~--=1x , Pl@)=1+az+a®+a?
—x
1
O :1 4 8'.‘:7
(ZIT) +z*+x 1—ZE4’

24



The GFs are
A(x)=x+m2+x3~--=1x , Pl@)=1+az+a®+a?
—x
1
1) -1 4 8. = ,
(l‘) +tat+z 1_$4
1
Gx)=1+z+2>+2%. = :
1—=x

The GF of B (baskets) is

24



So the answer is
[#2°)B(z) = 210,

and [z"]|B(x) = n(n+ 1)/2 — pretty easy by SageMath.

25



So the answer is
[#2°)B(z) = 210,

and [z"|B(x) = n(n+ 1)/2 — pretty easy by SageMath. Without
computer B(z) is

1 1 X
— (1 +x+x%+ = T+x+x2+x°).
1—( 1+t ) g Axpa—ay L Hxrx +x)
Z n(n - 1)xn -2 Z (—_an_l
(1 1-x? 2 VAN

25



Integer composition — with restriction

Example 8.6. Find the number of integer solutions to the equation
X1+Xp+X3=n

(n > 0 an integer) with xq > Oeven, x, > 0,and 0 < x3 < 2.

The GFs for 1, z,, x5 are

2 4 2 1 2
L b g o S ) Il @BIpGIow= , l4+zx+z
1—gx2 1—=z
The GF for the solution is
1+ x+ 22 1+ x+ 22

1—2z)(1—22) ((A+2z)(1—2)2

26



Partial fraction

We can further simplify to the form

l+z+22 = A N B N C
(I+z)(1—2)2 1+z 1l-—z (1-—2x)?2

form some constant A, B, C.

27



Partial fraction

We can further simplify to the form

l+z+22 = A N B N C
(I+z)(1—2)2 1+z 1l-—z (1-—2x)?2

form some constant A, B, C. This implies

l+z+22=A1-—2)>+B(1—2?)+C(1 +x)

27



Partial fraction

We can further simplify to the form

l+z+22 = A N B N C
(I+z)(1—2)2 1+z 1l-—z (1-—2x)?2

form some constant A, B, C. This implies
l+z+22=A1-—2)>+B(1—2?)+C(1 +x)

Equating coefficients on terms of equal degree
1=A+B+C, 1=-24A+4+C, 1=A-B.

Solving this gives

27



Integer composition — with restriction

This simplifies to

1 1 _§ 1 +§ 1

41+x 41-x 2(1-x)?

_1 S n.n 3 S n 3 S n-1

_ZZ(_l) X —sz +§an
n=0 n=0 n=0

So the coefficient of 2™ is

(-1)" 3 3(n+1)
4 4+ 2 '

28



Integer composition — without restriction

This is the GF of distributing n ¥ to any number of
(distinguishable) children, so no one has 0 5.
x BN w3 1 l—z
e () e () e

1—z 1—z 1- &  1-2z

29



Integer composition — without restriction

This is the GF of distributing n ¥ to any number of
(distinguishable) children, so no one has 0 5.

o T +(x>2+<$>3+ B 1 1—2
1—x 1—x 1—x N g

Since

11_—2-2. _ (Z 2”$n) . (Z 2nxn+1> ’

n>0 n>0

the coefficient of ™ is 21 for n > 1.

29



Integer composition — without restriction

This is the GF of distributing n ¥ to any number of
(distinguishable) children, so no one has 0 5.

o T +(x>2+<$>3+ B 1 1—2
11—z 1—zx 1—z N o '

Since

11_—2-2. _ (Z 2”$n) . (Z 2nxn+1> ’

n>0 n>0

the coefficient of ™ is 21 for n > 1.

By the balls and bars argument, this is 27! for n > 1. Why?

29



Appendix




Self-study guide (for people who missed the class)

= Read textbook 8.1-8.4

= \Watch online video lectures here.
= Recommended exercises Have a quick look of
= Textbook 8.9, 1-19 (Some solutions here)

30


http://pwp.gatech.edu/math3012openresources/lecture-videos/lecture-19/
https://people.math.gatech.edu/~trotter/math-3012/chapter8-solutions.pdf
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