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Introduction



Fibonacci sequence

The Fibonacci sequence is defined by

𝑓(0) = 0, 𝑓(1) = 1, 𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) (𝑛 ≥ 2).

First few terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
It appears in nature quite often

21 (blue) and 13 (aqua) spirals
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Fibonacci sequence – the ratio

The ratio of 𝑓(𝑛 + 1)/𝑓(𝑛) seems to converges
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Fibonacci sequence – the ratio

A closed form

𝑓(𝑛) = 1√
5 (𝜑𝑛 + 𝜓𝑛)

with

𝜑 = 1 +
√

5
2 ≈ 1.6180339887, 𝜓 = 1 −

√
5

2 ≈ −0.6180339887.

So when 𝑛 is large,
𝑓(𝑛 + 1)

𝑓(𝑛) ≈ 𝜑.

How can we get formula like this? This is what we will learn.
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Ternary string – revisit

A ternary string of alphabet { , , } is good if there’s no
followed by . Example

• – good
• – bad

Then
𝑡(𝑛) = 3𝑡(𝑛 − 1) − 𝑡(𝑛 − 2).

Easy to check

𝑡(𝑛) = 1
10 (3

√
5 + 5) (3 +

√
5

2 )
𝑛

+ 1
10 (5 − 3

√
5) (3 −

√
5

2 )
𝑛

How can we get this?

4



Ternary string – revisit

A ternary string of alphabet { , , } is good if there’s no
followed by . Example

• – good
• – bad

Then
𝑡(𝑛) = 3𝑡(𝑛 − 1) − 𝑡(𝑛 − 2).

Easy to check

𝑡(𝑛) = 1
10 (3

√
5 + 5) (3 +

√
5

2 )
𝑛

+ 1
10 (5 − 3

√
5) (3 −

√
5

2 )
𝑛

How can we get this?

4



Ternary string – revisit

A ternary string of alphabet { , , } is good if there’s no
followed by . Example

• – good
• – bad

Then
𝑡(𝑛) = 3𝑡(𝑛 − 1) − 𝑡(𝑛 − 2).

Easy to check

𝑡(𝑛) = 1
10 (3

√
5 + 5) (3 +

√
5

2 )
𝑛

+ 1
10 (5 − 3

√
5) (3 −

√
5

2 )
𝑛

How can we get this?

4



Lines and areas–Recursion

Let 𝑛 be the number of lines and 𝑟(𝑛) be the number of regions.
Then

𝑟(𝑛) = 𝑛 + 𝑟(𝑛 − 1)
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Linear Recurrence Equations



Definitions

A sequence (𝑎𝑛, 𝑛 ≥ 0) satisfies a linear recurrence if

𝑐0𝑎𝑛+𝑘 + 𝑐1𝑎𝑛+𝑘−1 + 𝑐2𝑎𝑛+𝑘−2 + ⋯ + 𝑐𝑘𝑎𝑛 = 𝑔(𝑛),

where 𝑘 ≥ 1 is an integers, 𝑐0, 𝑐1, … , 𝑐𝑘 are constants, with
𝑐0, 𝑐𝑘 ≠ 0, and 𝑔 is a function.

The recursion is homogeneous if 𝑔(𝑛) is always 0. Example

𝑓(𝑛 + 2) − 𝑓(𝑛 + 1) − 𝑓(𝑛) = 0.

Otherwise it is nonhomogeneous. Example

𝑟(𝑛 + 1) − 𝑟(𝑛) = 𝑛 + 1.
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Advancement operator

Let 𝐴𝑓(𝑛) = 𝑓(𝑛 + 1) and 𝐴𝑝𝑓(𝑛) = 𝑓(𝑛 + 𝑝).

The recursion for Fibonacci sequence can be written as

𝐴2𝑓(𝑛) − 𝐴𝑓(𝑛) − 𝐴0𝑓(𝑛) = 0.

Or simply
(𝐴2 − 𝐴 − 1)𝑓 = 0.

The recurrence

𝑐0𝑓(𝑛 + 𝑘)+𝑐1𝑓(𝑛 + 𝑘 − 1)+𝑐2𝑓(𝑛 + 𝑘 − 2)+⋯+𝑐𝑘𝑓(𝑛) = 𝑔(𝑛),

can be written as

𝑝(𝐴)𝑓 = (𝑐0𝐴𝑘 + 𝑐1𝐴𝑘−1 + 𝑐2𝐴𝑘−2 + ⋯ + 𝑐𝑘)𝑓 = 𝑔.
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The roots of 𝑝(𝐴)

A root of 𝑝(𝐴) is a number 𝑟 such that 𝑝(𝑟) = 0.

E.g., the roots
of 𝐴2 − 1 are 1 and −1.

Fact 𝑝(𝐴) has 𝑘 non-zero roots 𝑟1, … , 𝑟𝑘 ∈ ℂ, i.e.,

𝑝(𝐴) = (𝐴 − 𝑟1)(𝐴 − 𝑟2)(𝐴 − 𝑟3) … (𝐴 − 𝑟𝑘),

and 𝑟1 ≠ 0, … , 𝑟𝑘 ≠ 0.

Example
Let 𝕚 =

√
−1. Then

𝐴2 + 1 = (𝐴 − 𝕚)2

Not true if restricted to real solutions!
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Properties of Advancement operator (1)

While
𝐴2 + 𝐴 − 6 = (𝐴 + 3)(𝐴 − 2),

we also have

(𝐴 + 3)(𝐴 − 2)𝑓(𝑛) = (𝐴 + 3)(𝑓(𝑛 + 1) − 2𝑓(𝑛))
= (𝑓(𝑛 + 2) − 2𝑓(𝑛 + 1)) + 3(𝑓(𝑛 + 1) − 2𝑓(𝑛))
= 𝑓(𝑛 + 2) + 𝑓(𝑛 + 1) − 6𝑓(𝑛)
= (𝐴2 + 𝐴 − 6)𝑓(𝑛)

Fact If 𝑝(𝐴) = 𝑞(𝐴) as polynomial, then 𝑝(𝐴)𝑓 = 𝑞(𝐴)𝑓 .
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Properties of Advancement operator (2)

Fact We have

𝑝(𝐴)(𝑓1(𝑛) + 𝑓2(𝑛)) = 𝑝(𝐴)𝑓1(𝑛) + 𝑝(𝐴)𝑓2(𝑛)

An example –

(𝐴 − 2)(𝑓1(𝑛) + 𝑓2(𝑛))
= 𝐴(𝑓1(𝑛) + 𝑓2(𝑛)) − 2(𝑓1(𝑛) + 𝑓2(𝑛))
= (𝑓1(𝑛 + 1) + 𝑓2(𝑛 + 1)) − 2(𝑓1(𝑛) + 𝑓2(𝑛))
= (𝐴 − 2)𝑓1(𝑛) + (𝐴 − 2)𝑓2(𝑛)
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What if 𝑐𝑘 = 0?

We assume that 𝑐𝑘 ≠ 0, in the linear recurrence

𝑐0𝑎𝑛+𝑘 + 𝑐1𝑎𝑛+𝑘−1 + 𝑐2𝑎𝑛+𝑘−2 + ⋯ + 𝑐𝑘𝑎𝑛 = 𝑔(𝑛),

because can always translate it to 𝑐𝑘 ≠ 0.

Example

𝑝(𝐴) = 𝐴6 − 3𝐴5 + 5𝐴2 = (𝐴4 − 3𝐴3 + 5) 𝐴2.

If
(𝐴4 − 3𝐴3 + 5)ℎ∗(𝑛) = 𝑔(𝑛)

then
(𝐴4 − 3𝐴3 + 5)𝐴2ℎ∗(𝑛 − 2) = 𝑔(𝑛)

So the solution for 𝑝(𝐴)ℎ = 𝑔 is ℎ(𝑛) = ℎ∗(𝑛 − 2).
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What if 𝑐𝑘 = 0?

We assume that 𝑐𝑘 ≠ 0, in the linear recurrence
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Solving advancement operator
equations – homogeneous



A trivial example

Find all solutions for

(𝐴 − 2)𝑓(𝑛) = 0

Obviously 𝑓1(𝑛) = 2𝑛 is a solution

(𝐴 − 2)2𝑛 = 𝐴(2𝑛) − 2 × 2𝑛 = 2𝑛+1 − 2𝑛+1 = 0.

So 𝑐12𝑛 for some constant 𝑐1 is also a solution.

Easy to check 𝑐12𝑛 are all the solutions.

Quiz What is the solution for

(𝐴 + 3)𝑓(𝑛) = 0
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First example

Example 9.9 – Find all solutions for

𝑝(𝐴)𝑓 = (𝐴2 + 𝐴 − 6)𝑓 = (𝐴 + 3)(𝐴 − 2)𝑓 = 0

If (𝐴 − 2)𝑓1 = 0 then (𝐴 + 3)(𝐴 − 2)𝑓1 = 0.

For example, 𝑓1(𝑛) = 2𝑛,

𝑝(𝐴)2𝑛 = 2𝑛+2 + 2𝑛+1 − 6 × 2𝑛 = 2𝑛(4 + 2 − 6) = 0

All 𝑐12𝑛 are also solutions.
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First example

Example 9.9 – Find all solutions for

𝑝(𝐴)𝑓 = (𝐴2 + 𝐴 − 6)𝑓 = (𝐴 − 2)(𝐴 + 3)𝑓 = 0

If (𝐴 + 3)𝑓2 = 0 then (𝐴 − 2)(𝐴 + 3)𝑓2 = 0.

For example, 𝑓2(𝑛) = (−3)𝑛,

𝑝(𝐴)(−3)𝑛 = (−3)𝑛+2 + (−3)𝑛+1 − 6 × (−3)𝑛

= (−3)𝑛(9 − 3 − 6) = 0

All 𝑐2(−3)𝑛 are also solutions.
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Example 9.9 – Find all solutions for

𝑝(𝐴)𝑓 = (𝐴2 + 𝐴 − 6)𝑓 = (𝐴 + 3)(𝐴 − 2)𝑓 = 0

Together 𝑐12𝑛 + 𝑐2(−3)𝑛 are also solutions,

since

𝑝(𝐴)(𝑓1(𝑛) + 𝑓2(𝑛)) = 𝑝(𝐴)𝑓1(𝑛) + 𝑝(𝐴)𝑓2(𝑛)

Fact 𝑐12𝑛 + 𝑐2(−3)𝑛 are all the solutions.
Fact If 𝑝(𝐴) is of degree 𝑘, then the general solution for
𝑝(𝐴)𝑓 = 𝑔 has 𝑘 parameters.
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Example – Ternary strings

The linear recursion for ternary strings is

𝑡(𝑛 + 2) − 3𝑡(𝑛 + 1) + 𝑡(𝑛) = 0

In other words
(𝐴2 − 3𝐴 + 1)𝑡 = 0.

Since

𝐴2 − 3𝐴 + 1 = (𝐴 − (3 +
√

5
2 )) (𝐴 − (3 −

√
5

2 ))

all the solutions are like

𝑡(𝑛) = 𝑐1 (3 +
√

5
2 )

𝑛

+ 𝑐2 (3 −
√

5
2 )

𝑛

.
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Example – Ternary strings

Since 𝑡(0) = 1 and 𝑡(1) = 3,

𝑡(𝑛) = 𝑐1 (3 +
√

5
2 )

𝑛

+ 𝑐2 (3 −
√

5
2 )

𝑛

implies that

𝑐1 + 𝑐2 = 1, 𝑐1 (3 +
√

5
2 ) + 𝑐2 (3 −

√
5

2 ) = 3

Solving this

𝑐1 = 1
10 (3

√
5 + 5) , 𝑐2 = 1

10 (5 − 3
√

5)
and

𝑡(𝑛) = 1
10 (3

√
5 + 5) (3 +

√
5

2 )
𝑛

+ 1
10 (5 − 3

√
5) (3 −

√
5

2 )
𝑛

17



Example – Ternary strings

Since 𝑡(0) = 1 and 𝑡(1) = 3,

𝑡(𝑛) = 𝑐1 (3 +
√

5
2 )

𝑛

+ 𝑐2 (3 −
√

5
2 )

𝑛

implies that

𝑐1 + 𝑐2 = 1, 𝑐1 (3 +
√

5
2 ) + 𝑐2 (3 −

√
5

2 ) = 3

Solving this

𝑐1 = 1
10 (3

√
5 + 5) , 𝑐2 = 1

10 (5 − 3
√

5)
and

𝑡(𝑛) = 1
10 (3

√
5 + 5) (3 +

√
5

2 )
𝑛

+ 1
10 (5 − 3

√
5) (3 −

√
5

2 )
𝑛

17



Example – Ternary strings

Since 𝑡(0) = 1 and 𝑡(1) = 3,

𝑡(𝑛) = 𝑐1 (3 +
√

5
2 )

𝑛

+ 𝑐2 (3 −
√

5
2 )

𝑛

implies that

𝑐1 + 𝑐2 = 1, 𝑐1 (3 +
√

5
2 ) + 𝑐2 (3 −

√
5

2 ) = 3

Solving this

𝑐1 = 1
10 (3

√
5 + 5) , 𝑐2 = 1

10 (5 − 3
√

5)

and

𝑡(𝑛) = 1
10 (3

√
5 + 5) (3 +

√
5

2 )
𝑛

+ 1
10 (5 − 3

√
5) (3 −

√
5

2 )
𝑛

17



Example – Ternary strings

Since 𝑡(0) = 1 and 𝑡(1) = 3,

𝑡(𝑛) = 𝑐1 (3 +
√

5
2 )

𝑛

+ 𝑐2 (3 −
√

5
2 )

𝑛

implies that

𝑐1 + 𝑐2 = 1, 𝑐1 (3 +
√

5
2 ) + 𝑐2 (3 −

√
5

2 ) = 3

Solving this

𝑐1 = 1
10 (3

√
5 + 5) , 𝑐2 = 1

10 (5 − 3
√

5)
and

𝑡(𝑛) = 1
10 (3

√
5 + 5) (3 +

√
5

2 )
𝑛

+ 1
10 (5 − 3

√
5) (3 −

√
5

2 )
𝑛

17



The distinct roots case

Theorem 9.21
Assume that for disintct 𝑟1, 𝑟2, … 𝑟𝑘,

𝑝(𝐴) = (𝐴 − 𝑟1)(𝐴 − 𝑟2) … (𝐴 − 𝑟𝑘).

Then every solution of 𝑝(𝐴)𝑓 = 0 has the form

𝑓(𝑛) = 𝑐1𝑟𝑛
1 + 𝑐2𝑟𝑛

2 + ⋯ + 𝑐𝑘𝑟𝑛
𝑘

18



Example – Repeated roots

What is the solution for

(𝐴 − 2)2𝑓 = 0

𝑐12𝑛 is a solution, but cannot be all of them.
What about 𝑐2𝑛2𝑛?

(𝐴 − 2)2(𝑐2𝑛2𝑛) = (𝐴 − 2)(𝑐2(𝑛 + 1)2𝑛+1 − 2𝑐2𝑛2𝑛)
= (𝐴 − 2)(𝑐22𝑛+1)
= 𝑐22𝑛+2 − 2𝑐22𝑛+1 = 0

So the general solution is

𝑓(𝑛) = 𝑐12𝑛 + 𝑐2𝑛2𝑛

19
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Example – Repeated roots

What is the solution for

(𝐴 + 5)(𝐴 − 1)3𝑓 = 0

Obviously 𝑐1(−5)𝑛 is a solution.
By the previous example, 𝑐21𝑛 = 𝑐2 and 𝑐3𝑛1𝑛 = 𝑐3𝑛 are also
solutions.
Quiz Can you guess another form of solution? Answer 𝑐4𝑛2. So
the general solution is

𝑓(𝑛) = 𝑐1(−5)𝑛 + 𝑐2 + 𝑐3𝑛 + 𝑐4𝑛2.

20



Example – Repeated roots

What is the solution for

(𝐴 + 5)(𝐴 − 1)3𝑓 = 0

Obviously 𝑐1(−5)𝑛 is a solution.

By the previous example, 𝑐21𝑛 = 𝑐2 and 𝑐3𝑛1𝑛 = 𝑐3𝑛 are also
solutions.
Quiz Can you guess another form of solution? Answer 𝑐4𝑛2. So
the general solution is

𝑓(𝑛) = 𝑐1(−5)𝑛 + 𝑐2 + 𝑐3𝑛 + 𝑐4𝑛2.

20



Example – Repeated roots

What is the solution for

(𝐴 + 5)(𝐴 − 1)3𝑓 = 0

Obviously 𝑐1(−5)𝑛 is a solution.
By the previous example, 𝑐21𝑛 = 𝑐2 and 𝑐3𝑛1𝑛 = 𝑐3𝑛 are also
solutions.

Quiz Can you guess another form of solution? Answer 𝑐4𝑛2. So
the general solution is

𝑓(𝑛) = 𝑐1(−5)𝑛 + 𝑐2 + 𝑐3𝑛 + 𝑐4𝑛2.

20



Example – Repeated roots

What is the solution for

(𝐴 + 5)(𝐴 − 1)3𝑓 = 0

Obviously 𝑐1(−5)𝑛 is a solution.
By the previous example, 𝑐21𝑛 = 𝑐2 and 𝑐3𝑛1𝑛 = 𝑐3𝑛 are also
solutions.
Quiz Can you guess another form of solution?

Answer 𝑐4𝑛2. So
the general solution is

𝑓(𝑛) = 𝑐1(−5)𝑛 + 𝑐2 + 𝑐3𝑛 + 𝑐4𝑛2.

20



Example – Repeated roots

What is the solution for

(𝐴 + 5)(𝐴 − 1)3𝑓 = 0

Obviously 𝑐1(−5)𝑛 is a solution.
By the previous example, 𝑐21𝑛 = 𝑐2 and 𝑐3𝑛1𝑛 = 𝑐3𝑛 are also
solutions.
Quiz Can you guess another form of solution? Answer 𝑐4𝑛2.

So
the general solution is

𝑓(𝑛) = 𝑐1(−5)𝑛 + 𝑐2 + 𝑐3𝑛 + 𝑐4𝑛2.

20



Example – Repeated roots

What is the solution for

(𝐴 + 5)(𝐴 − 1)3𝑓 = 0

Obviously 𝑐1(−5)𝑛 is a solution.
By the previous example, 𝑐21𝑛 = 𝑐2 and 𝑐3𝑛1𝑛 = 𝑐3𝑛 are also
solutions.
Quiz Can you guess another form of solution? Answer 𝑐4𝑛2. So
the general solution is

𝑓(𝑛) = 𝑐1(−5)𝑛 + 𝑐2 + 𝑐3𝑛 + 𝑐4𝑛2.

20



Repated roots

Lemma 9.22
Let 𝑘 ≥ 1. Then general soltuion of

(𝐴 − 𝑟)𝑘𝑓 = 0

has the form

𝑓(𝑛) = 𝑐1𝑟𝑛 + 𝑐2𝑛𝑟𝑛 + ⋯ + 𝑐𝑘𝑛𝑘−1𝑟𝑛

21



Solving advancement operator
equations – nonhomogeneous



Example – Nonhomogenous

Problem
What is the general solution for

𝑝(𝐴)𝑓 = (𝐴 + 2)(𝐴 − 6)𝑓 = 3𝑛

Quiz What is the solution for the homogeneous version

𝑝(𝐴)𝑓 = (𝐴 + 2)(𝐴 − 6)𝑓 = 0

Answer
𝑓1(𝑛) = 𝑐1(−2)𝑛 + 𝑐26𝑛.

Observation If 𝑝(𝐴)𝑓2 = 3𝑛, then 𝑝(𝐴)(𝑓1 + 𝑓2) = 3𝑛.
Punch line It is enough to find one particular solution 𝑓2!
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Example – Nonhomogenous – Finding a particular solution

Problem
Can you find any one solution for

𝑝(𝐴)𝑓 = (𝐴 + 2)(𝐴 − 6)𝑓 = 3𝑛

Unfortunately, no general method is known. Best guess, something
like the RHS. E.g., 𝑑3𝑛. Easy to check that

𝑝(𝐴)𝑑3𝑛 = −5𝑑3𝑛+1

If 𝑑 = − 1
15 , then this is one solution

𝑓2(𝑛) = 𝑑3𝑛 = − 1
153𝑛

And the general solution is

𝑓(𝑛) = 𝑓1(𝑛) + 𝑓2(𝑛) = 𝑐1(−2)𝑛 + 𝑐26𝑛 − 1
153𝑛
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Nonhomogenous – Recipe

We want to solve problems like

𝑝(𝐴)𝑓 = 𝑔.

First we find the general solution 𝑓1 for

𝑝(𝐴)𝑓 = 0

Second we find (any) one solution (by guessing) 𝑓2 for

𝑝(𝐴)𝑓 = 𝑔.

Then the general solution is

𝑓(𝑛) = 𝑓1(𝑛) + 𝑓2(𝑛)
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Example – Lines and areas

Problem
What is the general solution for

𝑟(𝑛 + 1) − 𝑟(𝑛) = 𝑛 + 1 ⟷ (𝐴 − 1)𝑟 = 𝑛 + 1

The general solution for homogeneous version is 𝑓1(𝑛) = 𝑐1.

First guess of a particular solution is 𝑑1𝑛 + 𝑑2. But this won’t work.
Second guess is 𝑑1𝑛2 + 𝑑2𝑛. Turned out

(𝐴 − 1)(𝑑1𝑛2 + 𝑑2𝑛) = 2𝑑1𝑛 + 𝑑1 + 𝑑2.

So 𝑓2(𝑛) = 𝑛2/2 + 𝑛/2 is a solution. And the general solution is

𝑓(𝑛) = 𝑓1(𝑛) + 𝑓2(𝑛) = 𝑐1 + 𝑛2 + 𝑛
2
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Using generating functions to solve
recurrences



Example 9.24

We want to solve the linear recurrence

𝑟𝑛 + 𝑟𝑛−1 − 6𝑟𝑛−2 = 0,

with 𝑟0 = 1 and 𝑟1 = 3.

In terms of advancement operator, this is to solve

(𝐴2 + 𝐴 − 6)𝑟 = (𝐴 − 2)(𝐴 + 3)𝑟 = 0.

Quiz What is the general solution?

𝑐12𝑛 + 𝑐2(−3)𝑛
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Example 9.24 – with GF

We want to solve the linear recurrence

𝑟𝑛 + 𝑟𝑛−1 − 6𝑟𝑛−2 = 0,

with 𝑟0 = 1 and 𝑟1 = 3.

The GF for (𝑟𝑛, 𝑛 ≥ 0) is 𝑓(𝑥) = ∑𝑛≥0 𝑟𝑛𝑥𝑛, and

𝑓(𝑥) = 𝑟0 + 𝑟1𝑥 + 𝑟2𝑥2 + …
𝑥𝑓(𝑥) = 0 + 𝑟0𝑥 + 𝑟1𝑥2 + 𝑟2𝑥3 + …

−6𝑥2𝑓(𝑥) = 0 + 0 − 6𝑟0𝑥2 − 6𝑟1𝑥3 − 6𝑟2𝑥4 + …

Summing over the three equations, we have

(1 + 𝑥 − 6𝑥2)𝑓(𝑥) = 1 + 4𝑥
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Example 9.24 – with GF

Therefore

𝑓(𝑥) = 1 + 4𝑥
1 + 𝑥 − 6𝑥2 = 1 + 4𝑥

(1 − 2𝑥)(1 + 3𝑥)

We can always turn this into partial sums

𝑓(𝑥) = 6
5

1
1 − 2𝑥 − 1

5
1

1 + 3𝑥 = 6
5 ∑

𝑛≥0
(2𝑥)𝑛 − 1

5 ∑
𝑛≥0

(−3𝑥)𝑛

Thus
𝑟𝑛 = [𝑥𝑛]𝑓(𝑥) = 6

52𝑛 − 1
5(−3)𝑛.
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Example 9.25 – Nonhomogenous case

We want to solve the linear recurrence

𝑟𝑛 − 𝑟𝑛−1 − 2𝑟𝑛−2 = 2𝑛,
with 𝑟0 = 2 and 𝑟1 = 1.

Summing over 𝑛 ≥ 2,

∑
𝑛≥2

𝑟𝑛𝑥𝑛 − ∑
𝑛≥2

𝑟𝑛−1𝑥𝑛 − 2 ∑
𝑛≥2

𝑟𝑛−2𝑥𝑛 = ∑
𝑛≥2

2𝑛𝑥𝑛

Let 𝑅(𝑥) = ∑𝑛≥0 𝑟𝑛𝑥𝑛, then

𝑅(𝑥) − (2 + 𝑥) − (𝑥𝑅(𝑥) − 2𝑥) − 2𝑥2𝑅(𝑥) = 1
1 − 2𝑥 − (1 + 2𝑥)

In other words

𝑅(𝑥) = 6𝑥2 − 5𝑥 + 2
(1 − 2𝑥)(1 − 2𝑥)(1 + 𝑥)
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Example 9.25 – Nonhomogenous case

Again, we can turn

𝑅(𝑥) = 6𝑥2 − 5𝑥 + 2
(1 − 2𝑥)2(1 + 𝑥)

into partial fractions

𝑅(𝑥) = − 1
9(1 − 2𝑥) + 2

3(1 − 2𝑥)2 + 13
9(1 + 𝑥)

Quiz How can we get
[𝑥𝑛] 1

(1 − 2𝑥)2

By Newton’s binomial theorem
1

(1 − 2𝑥)2 = ∑
𝑛≥0

(−2
𝑛 )(−2𝑥)𝑛 = ∑

𝑛≥0
(𝑛 + 1)(2𝑥)𝑛
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Example 9.25 – Nonhomogenous case

Therefore

𝑅(𝑥) = − 1
9(1 − 2𝑥) + 2

3(1 − 2𝑥)2 + 13
9(1 + 𝑥)

implies that

−1
9 ∑

𝑛≥0
(2𝑥)𝑛 + 2

3 ∑
𝑛≥0

(𝑛 + 1)(2𝑥)𝑛 + 13
9 ∑

𝑛≥0
(−𝑥)𝑛

and

𝑟𝑛 = [𝑥𝑛]𝑅(𝑥) = −1
92𝑛 + 2

3(𝑛 + 1)2𝑛 + 13
9 (−1)𝑛
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Pros and cons

Benefit of using GF – no need to guess a solution.

Disadvantage of using GF – often need to convert to partial
fraction.

Use whatever method you want unless the problem specifically
asks.
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Appendix



Self-study guide (for people who missed the class)

• Watch online video lectures here.
• Read textbook chapter 9.1-9.4, 9.6
• Try exercises in textbook 9.9 (some solutions here)
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http://pwp.gatech.edu/math3012openresources/lecture-videos/lecture-20/
https://people.math.gatech.edu/~trotter/math-3012/chapter9-solutions.pdf
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