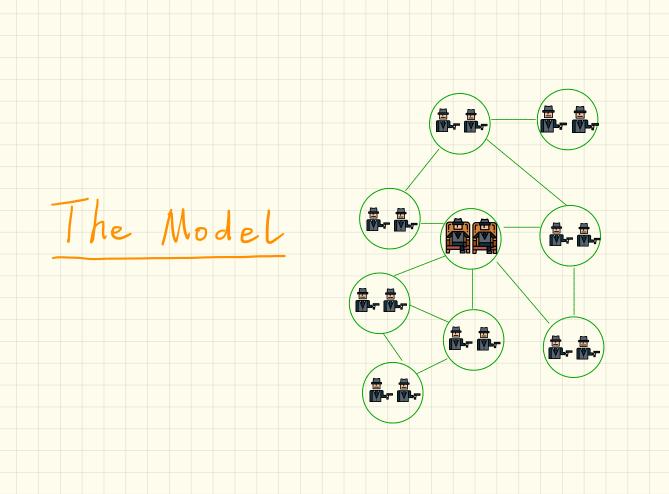
Cutting Resillient Networks Xing Shi Cai Cecilia Holmgren Stora Skerman

Uppsala University (Sweden)

Luc Devroye

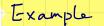
Mcgill University

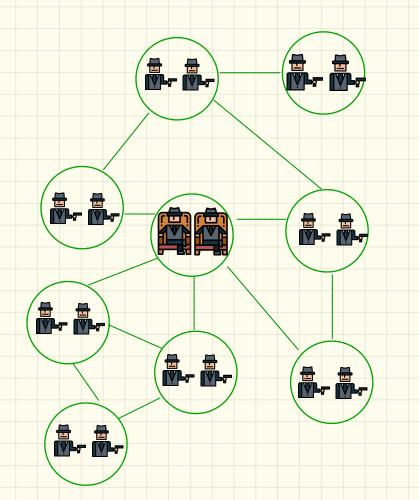
Cutting Resillient Networks k-cut on Paths and Some Trees Xing Shi Cai Cecilia Holmgren Skerman Uppsala University (Sweden) Luc Devroye Mcgill University

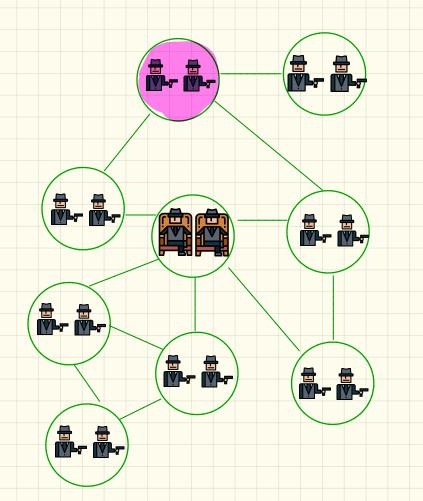


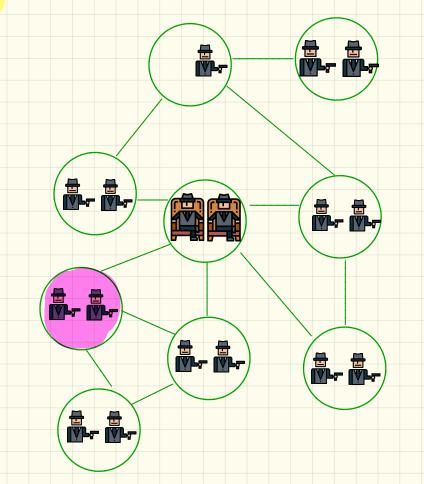
Rosted Graph · A rooted graph has one node labelled as the root. boss (root) · Can be viewed as models for criminal networks, terrorist cells, on botnets (륜 (malicious P2P networks). muscle.

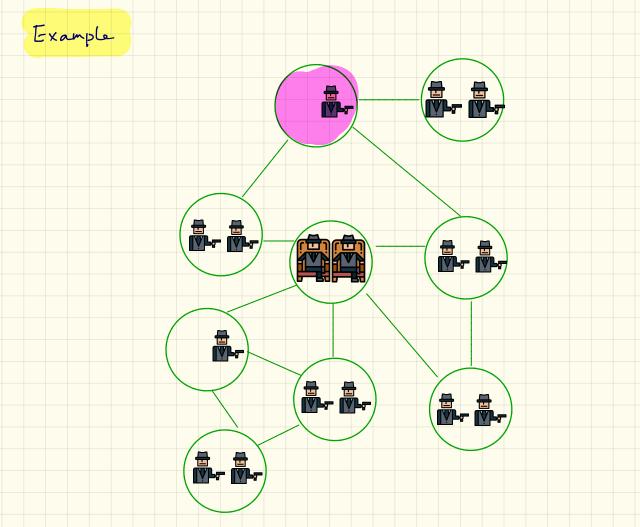
Destroying a Resillient Network Assume each node has KEN backups. We The root 1. Choose a node unif. at random. Remove one of its back up (aut it once) 2. Remove a node if all k backups are gone. 3. Keep only the component containing the root. 4. Repeat untill the root is gone.

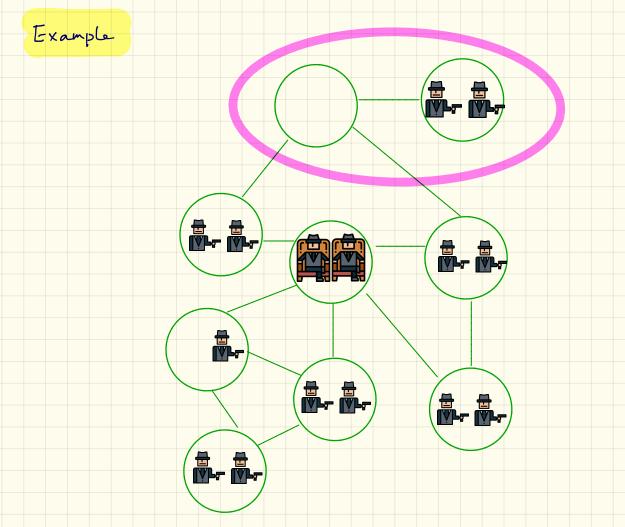


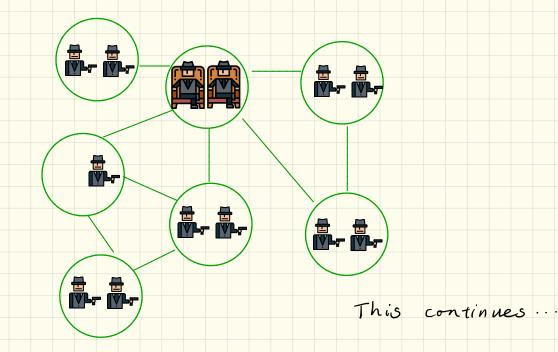


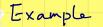


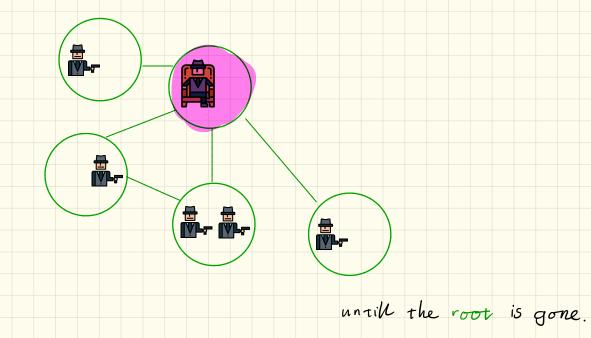


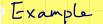


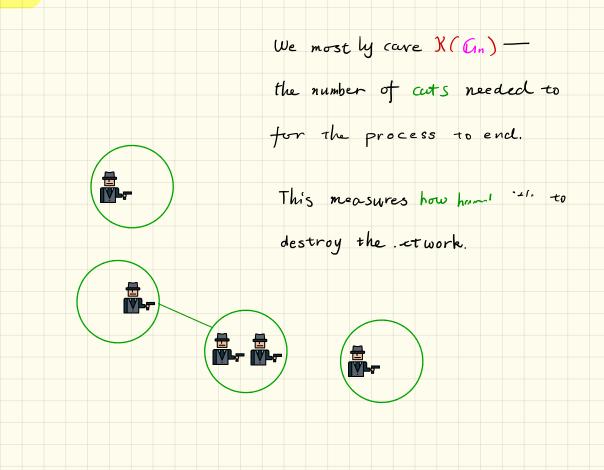


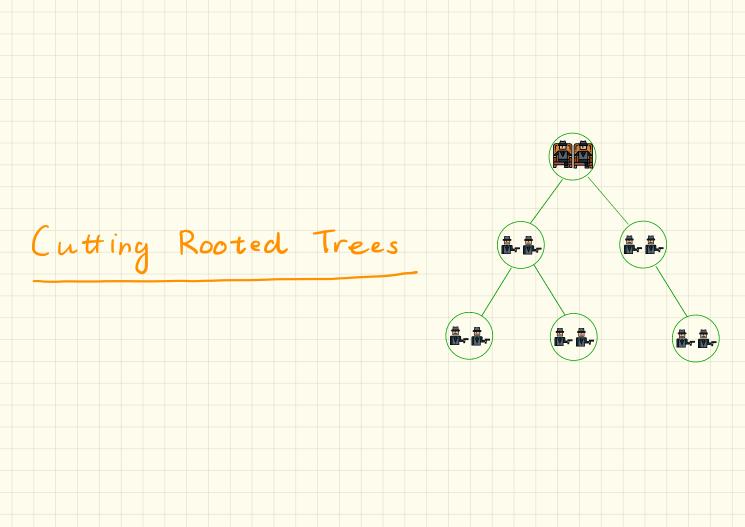


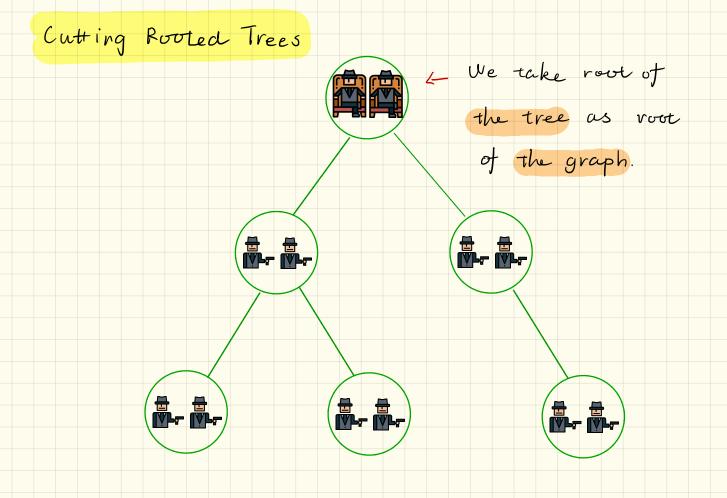












The case k=1

- . Let In be a rooted tree with n vertices.
- · Let K(In) be the num. of cuts needed to destroy In.
- · K(IIn) has been studied for k=1 in
 - Cayley trees Mein and Moon (1970)
 - Complete Binary trees Janson (2004).
 - Conditional Galton-Watson trees Jonson (2006).
 - Addario-Berry, Broutin, Holmgren (2014).
 - Binary Search Trees and Split Trees Holmgren (2011, 2012).
 - RRT Meir and Moon (1974) Prmota et al. (2009).

An equivalent model k=1

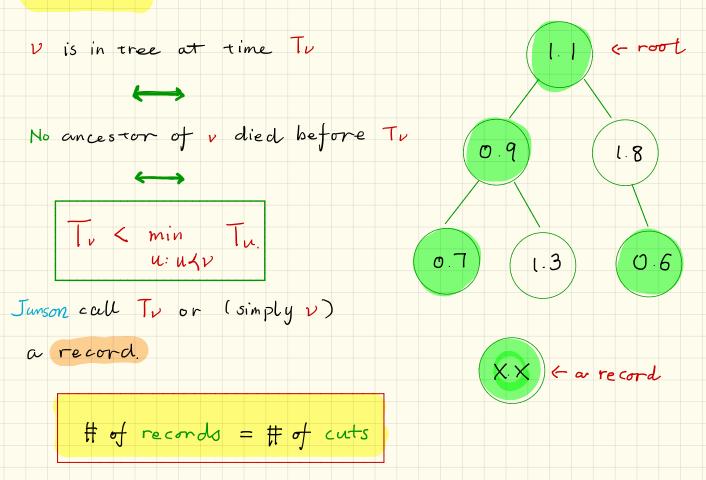
- We give each node va time stamp To~Exp(1) iid 0.9.L. (1.8.L. - We cut a node v at time To if v is still in the tree. 0.7.L. (1.3.L. (1.6.L. - Each time we are still

cutting a uniform random

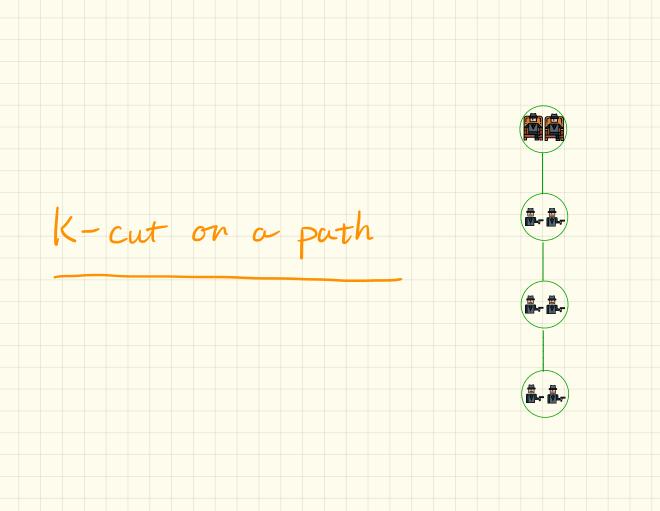
node.

I de a comes from Svante (2004).

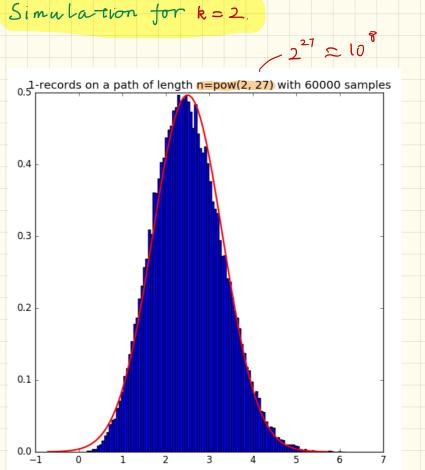
Records



Generalize to k>1. G 11 7 1.05 · . Each node V get timestamps G 21V 1.82 TIDITADI ~ Exp(1) jid 0.80 L 1.40 L 3.22 · Let Gry = 5. Tiv ~ Gam (k,) · Cut v at zime Grv if v is still in tree \longleftrightarrow Time u dies. Grv < min Ghu u: u < V 0.10 1.29 1.29 1.29 1.29 1.9 1.9 2.35 L 2.35 X.X ← I-record · Call such Grv or (simply v) X.X & 2-reard an r-record. Number of r-records. $\operatorname{cut}_{\mathcal{S}} \longrightarrow \mathcal{K}(\mathbb{I}_n) = \sum_{r=1}^{k} \mathcal{K}_r(\mathbb{I}_n)^{r}$



The simplest graph - path 0.8 3 Let Pn be a path a n nodes. (0.9) (4)For all graphs (In of n nodes, $K(\mathbb{P}_n) \not\prec K(\mathbb{C}_n)$ 0.7 ←> 2 i.e., a path is the easiest to cut. Quiz Which graph is the hardest to cut? (1.1) (5) For k=1, K(Pn)~# of records 0.6 in unif rand permutation $\frac{K(\mathbb{P}_n) - \log(n)}{\sqrt{1-1}} \stackrel{d}{\rightarrow} N(o, 1) \quad (nor mal)$ $\mathbb{E}(\mathbb{X}(\mathbb{R})) = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{2}$ V wg(n) = Hr~ logr



More simulations. k=2

Analysis 30000 samples for path length 536870912 (2^29) $\propto 10^{9}$

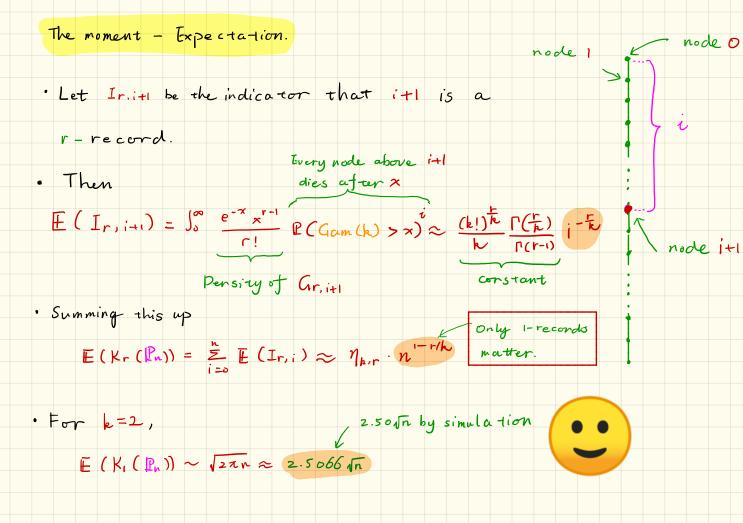
Mean 58141.156467 Mean divided by sqrt(n) 2.509278

Variance 358057278.161121 Variance divided by n 0.666934

The 3 moment divided by variance^(3/2) is 0.238525 The 4 moment divided by variance (4/2) is 2.919119 The 5 moment divided by variance^(5/2) is 2.326212 The 6 moment divided by variance^(6/2) is 14.591784

· This cannot be a normal distribution.

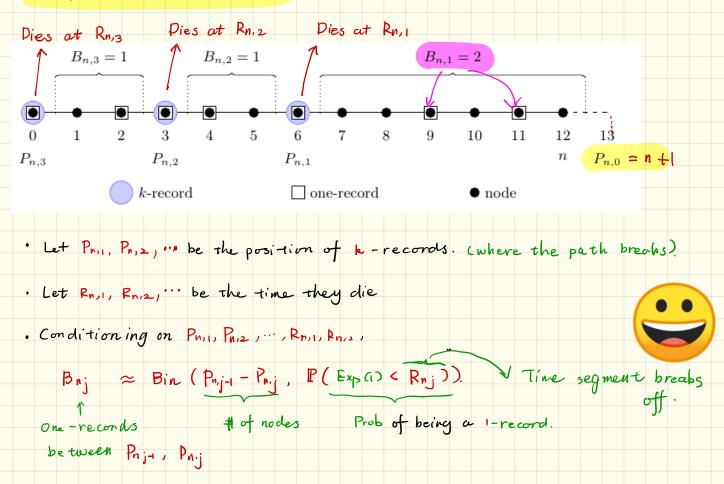
The expectation is order in Can we find the constant?



The moment - Varion ce
• We only care about 1- records.
• Similar to expectation

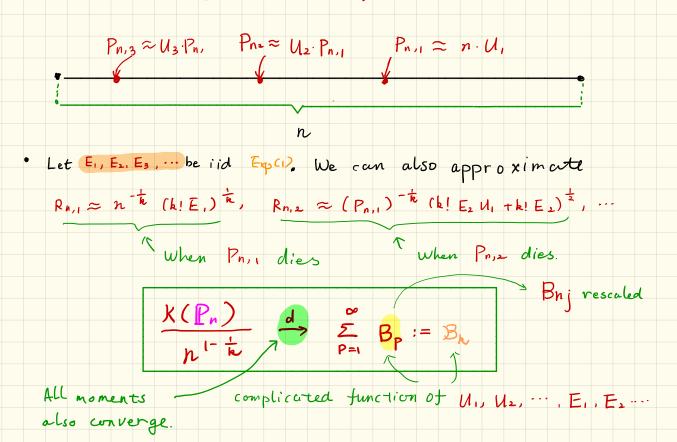
$$\frac{E(K_1(\mathbb{P}_n)^2)}{n^{2-\frac{1}{m}}} \sim \frac{\left\lceil \left(\frac{2}{\mu}\right)(h!\right)}{h-1} + \frac{\pi \arctan\left(\frac{\pi}{h}\right)\Gamma\left(\frac{2}{h}\right)(h!\right)^2}{2(h-2)(h-1)}$$
Rather complicated constant
• When $k = 2$
• When $k = 2$
• $0.66 \text{ n by simulation}$
 $Var(K_1(\mathbb{P}_n)) \sim \left(\frac{\pi^2}{2} + 2 - 2\pi\right)n \approx 0.651 \text{ n.}$
• Higher moments seem to be bander !

The limit distribution



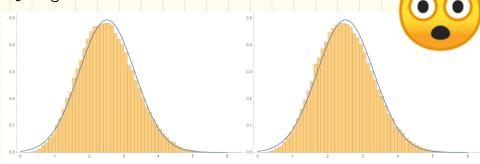
The limit distribution

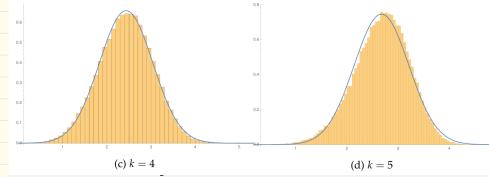
· Let U1, U2, U3 be iid Unif (0, 1).

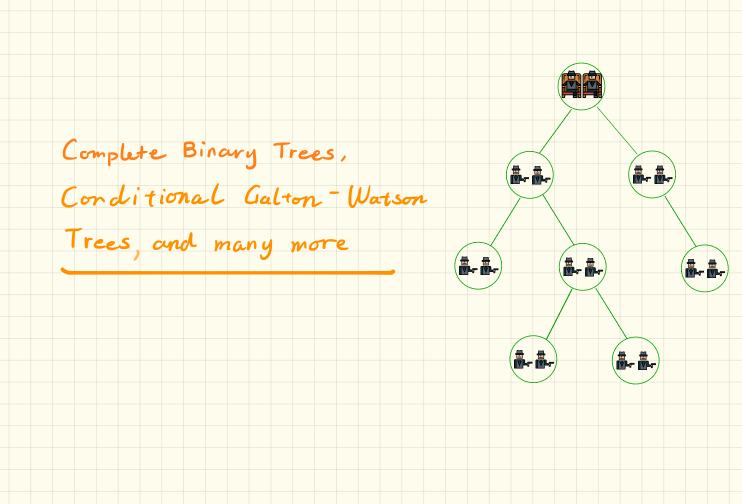


The simulation

- · We do not have the density function of Br.
- · But simulation suggests that it's close to a normal distribution.
- · Not everything that looks normal is normal!







The current landscope for k>2.

Cai, Devroye, Holmgren, Skerman 2019. EJP

Cutting resilient networks -- complete binary trees. Cai, Holmgren. 2018, arxiv

The k-cut model in deterministic and random trees. Berzunza,

Cai, Holmgren. (would have been on arxiv if not for the boat trip).

A note on the asymptotic

expansion the Lerch's

Transcendent. Cai, J.L. Lopez.

2019. Integral Transforms and

Special functions.

Graph	LLL	Moments	CLT
Paths			
Complete graphs			
Complete binary trees			
Conditional GW trees			
Preferential attachment			
Random recursive trees			
Split trees			

The challenge

- · Can even I-aut be studied in any random graph?
- · Cannot use record any more.
- Possible candidate: Gn,p with p = n⁻¹ + n^{-4/3}
- · The giant is almost a GW tree, plus Op(1)
 - edges. We choose root in the giant unit. rand.
- · Simulation suggest, on average it takes (k=1)

1.42 y giont size

- to cut the giant. should be 1.25 for aw trees.
- · Can we prove this ?

