Large fringe and non-fringe subtrees in conditional Galton-Watson trees

Xing Shi Cai, Luc Devroye

School of Computer Science McGill University

Probabilistic Midwinter Meeting Umeå University Jan 18, 2017

Outline

1 Introduction

- 2 Large Fringe Subtrees
- 3 Large Fringe Subtrees—Applications
- 4 Large Non-Fringe Subtrees

What is a tree

- A tree is an *acyclic graph*.
- In this talk, trees are *unlabeled*, *rooted*, and *ordered* (plane trees).

Galton-Watson trees

- A Galton-Watson (GW) tree 𝔅^{gw} starts with a single node.
- Each node in T^{gw} chooses a random number of child nodes independently from the same distribution ξ.
- Introduced by Bienaymé, 1845.

Note

We will always assume that $\mathbb{E}\xi = 1$ and $Var(\xi) \in (0, \infty)$.

- A conditional GW Tree \mathfrak{T}_n^{gw} is \mathfrak{T}^{gw} restricted to $|\mathfrak{T}^{gw}| = n$.
- So $\mathbb{P}\left\{\mathfrak{T}_{n}^{gw}=T\right\}=\mathbb{P}\left\{\mathfrak{T}^{gw}=T\mid |\mathfrak{T}^{gw}|=n\right\}.$
- It covers many uniform random tree models:
 - full binary trees
 - binary trees
 - d-ary trees
 - Motzkin trees
 - Plane trees
 - Cayley trees

Example of conditional Galton-Watson trees

- Let $\mathbb{P} \{\xi = i\} = 1/2^{i+1}$.
- In other words, $\xi \stackrel{\mathcal{L}}{=} \text{Ge}(1/2)$.
- \mathcal{T}_n^{gw} is uniformly distributed among all trees of size n.

$$\mathbb{P}\left\{ \mathfrak{T}^{gw} = \mathsf{T} \right\} = 2^{-7} \text{ for } \mathsf{T} \in \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right\}$$

Fringe subtrees

- For a node v of a tree T, the *fringe subtree* T_v contains v and all its decedents.
- It is what normally called a "subtree".

Fringe subtree count

Let N_T(J^{gw}_n) be the number of fringe subtrees of shape T in J^{gw}_n.

Fringe subtree count: bigger example

In the next example,

$$\frac{\mathsf{N}_\mathsf{T}(\mathfrak{T}_n^{gw})}{\mathfrak{n}} = \frac{15}{120} = \frac{1}{8} = \pi(\mathsf{T}) \equiv \mathbb{P}\{\mathfrak{T}^{gw} = \mathsf{T}\}.$$

Is this just a coincidence?

What is known

- For large n, fringe subtrees in T^{gw}_n behave like independent copies of T^{gw}.
- Take a uniform random fringe subtree of \mathcal{T}_n^{gw} , the probability to get T is about $\pi(T) \equiv \mathbb{P} \{ \mathcal{T}^{gw} = T \}$.

• So $N_T(\mathfrak{T}_n^{gw}) \approx Bi(n, \pi(T)).$

What is known cont.

Theorem Aldous (1991) (Law of large number)

As $n \to \infty$,

$$\frac{\mathsf{N}_{\mathsf{T}}(\mathfrak{I}_{\mathfrak{n}}^{gw})}{\mathfrak{n}} \xrightarrow{\mathsf{p}} \pi(\mathsf{T}).$$

Theorem Janson (2016) (Central limit theorm)

As $n \to \infty$,

$$\frac{\mathsf{N}_{\mathsf{T}}(\mathfrak{I}_{\mathfrak{n}}^{gw})-\mathfrak{n}\pi(\mathsf{T})}{\gamma\sqrt{\mathfrak{n}}} \stackrel{d}{\to} \mathsf{N}(0,1),$$

where γ is a constant.

- What if the T in $N_T(\mathfrak{T}_n^{gw})$ changes with n?
- The height of the largest complete r-ary fringe subtree.
- The largest k such that \mathcal{T}_n^{gw} contains all trees of size $\leq k$ as fringe subtree.
- What about non-fringe subtrees?

Outline

1 Introduction

- 2 Large Fringe Subtrees
- 3 Large Fringe Subtrees—Applications

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ● 13/47

4 Large Non-Fringe Subtrees

Large fringe subtrees

- If $|\mathsf{T}_n| \to \infty$, then $\pi(\mathsf{T}_n) \equiv \mathbb{P} \{ \mathfrak{T}^{gw} = \mathsf{T}_n \} \to 0$.
- Then we should have

$$N_{T_n}(\mathfrak{T}_n^{gw}) \approx Bi(n, \pi(T_n)) \approx Po(n\pi(T_n)).$$

Theorem 1.2

Let $k_n = o(n)$ *and* $k_n \to \infty$ *. Then*

$$\lim_{n\to\infty} \sup_{T:|T|=k_n} d_{TV}\left(N_T(\mathfrak{T}_n^{gw}), Po(n\pi(T))\right) = 0.$$

Theorem 1.2 cont.

So letting $(T_n)_{n \ge 1}$ be a sequence of trees with $|T_n| = k_n$, we have: 1 If $n\pi(T_n) \to 0$, then $N_{T_n}(\mathfrak{I}_n^{gw}) = 0$ whp.

- $\ \ \, \textbf{2} \ \, \textit{If} \, n\pi(T_n) \rightarrow \mu \in (0,\infty), \textit{then} \ \, N_{T_n}(\mathfrak{T}_n^{gw}) \stackrel{d}{\rightarrow} Po(\mu).$
- 3 If $n\pi(T_n) \rightarrow \infty$, then

$$\frac{\mathsf{N}_{\mathsf{T}_{\mathsf{n}}}(\mathfrak{I}_{\mathsf{n}}^{gw}) - \mathfrak{n}\pi(\mathsf{T}_{\mathsf{n}})}{\sqrt{\mathfrak{n}\pi(\mathsf{T}_{\mathsf{n}})}} \stackrel{\mathrm{d}}{\to} \mathsf{N}(0,1).$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ 差 のへで 15/47

The degree sequence

- The *degree* of a node is the number of its children.
- The *degree sequence* of a tree, is the list of degrees of its nodes in Depth-First-Search order.
- We can count fringe subtree through degree sequence.

Count fringe subtrees through the degree sequence

- Let $(\xi_1^n, \ldots, \xi_n^n)$ be the degree sequence of \mathcal{T}_n^{gw} .
- Let $(d_1, \ldots, d_{|\mathsf{T}|})$ be the degree sequence of T .
- Then $N_T(\mathfrak{T}_n^{gw})$ can be write as

$$\begin{split} \mathsf{N}_{\mathsf{T}}(\mathfrak{T}_{\mathsf{n}}^{gw}) &= \sum_{j=1}^{\mathsf{n}} \, \mathrm{I}_{j} \\ &\equiv \sum_{j=1}^{\mathsf{n}} \, \mathbb{1}_{\left[(\xi_{j}^{\mathsf{n}}, \dots, \xi_{j+|\mathsf{T}|-1}^{\mathsf{n}}) = (d_{1}, \dots, d_{|\mathsf{T}|}) \right]}. \end{split}$$

Why fringe subtrees are like unconditional Galton-Watson trees

When n is large, ξⁿ₁,..., ξⁿ_n are close to ξ₁,..., ξ_n (n independent copies of ξ).

Thus

$$\begin{split} \mathbb{P}\left\{I_{j}=1\right\} &= \mathbb{P}\left\{\cap_{i=1}^{|\mathsf{T}|}\left[\xi_{j+i-1}^{n}=d_{i}\right]\right\} \\ &\approx \prod_{i=1}^{|\mathsf{T}|}\mathbb{P}\{\xi_{i}=d_{i}\} = \mathbb{P}\{\mathfrak{T}^{gw}=\mathsf{T}\} \equiv \pi(\mathsf{T}). \end{split}$$

- So I_1, \ldots, I_n are close to iid Bernoulli $\pi(T)$.
- This is why $N_T(\mathfrak{T}_n^{gw}) = \sum_{j=1}^n I_j \approx Bi(n, \pi(T)) \approx Po(n\pi(T)).$

The exchangeable pair method

- The proof of Theorem 1.2 uses the exchangeable pair method (Ross (2011, thm. 4.37)).
- It is a variation of Stein's method for Poisson distribution.

Example

- Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be iid Be(p).
- Let $W = X_1 + \dots + X_n$.
- Let $W' = W X_Z + Y_Z$ where $Z \stackrel{\mathcal{L}}{=} \text{Unif}(\{1, \dots, n\})$.
- We have an exchange pair $(W, W') \stackrel{\mathcal{L}}{=} (W', W)$.
- Compute

$$\mathbb{P}\{W' = W - 1 \mid X_1, \dots, X_n\}, \quad \mathbb{P}\{W' = W + 1 \mid X_1, \dots, X_n\}.$$

Then the method says $d_{TV}(W, Po(\mathbb{E}W)) \leq p$.

Subtree replacing – the naive way

• Recall
$$N_T(\mathfrak{T}_n^{gw}) = \sum_{i=1}^n I_i$$
.

• What if we do the same thing for $N_T(\mathfrak{T}_n^{gw})$?

• Let
$$\overline{N} = N_T(\mathfrak{T}_n^{gw}) - I_Z + I'_Z$$
 with $I'_Z \stackrel{\mathcal{L}}{=} I_Z$.

■ Is $(\bar{N}, N_T(\mathfrak{T}_n^{gw}))$ an exchangeable pair?

Subtree replacing – the proper way

- Choose a fringe subtree of \mathcal{T}_n^{gw} uniformly at random.
 - If its size is not the same as T, do nothing.
 - Otherwise, replace it with $\mathcal{T}_{|T|}^{gw}$.
- Let \overline{N} be the number of T in the new tree.
- Then $(N_T(\mathfrak{T}_n^{gw}), \overline{N})$ is an exchangeable pair.

Upper bound of the total variation distance

- Let 𝔅_k be the set of all trees of size k.
- Let $S \subseteq \mathfrak{T}_k$.
- Let N_S(T^{gw}_n) be the number of fringe subtrees that belongs to S.

• Let
$$\pi(S) \equiv \mathbb{P} \{ \mathfrak{T}^{gw} \in S \}.$$

• So
$$N_T(\mathfrak{T}_n^{gw}) = N_{\{T\}}(\mathfrak{T}_n^{gw})$$
.

Lemma 4.1

Let
$$k = k_n = o(n)$$
 and $k \to \infty$. We have

$$\sup_{\boldsymbol{S} \subseteq \mathfrak{T}_k} \frac{d_{TV}\left(N_{\boldsymbol{S}}(\mathfrak{I}_n^{gw}), Po(n\pi(\boldsymbol{\mathfrak{S}}))\right)}{\pi(\boldsymbol{\mathfrak{S}})/\pi(\mathfrak{T}_k) + \sqrt{\pi(\boldsymbol{\mathfrak{S}})/\pi(\mathfrak{T}_k)}} \leqslant 1 + o\left(k^{-3/2}\right) + O\left(\frac{k^{1/4}}{\sqrt{n}}\right)$$

Large fringe subtrees count—set version

Theorem 1.3

Let \mathfrak{T}_k be the set of trees of size k. Let $k_n = o(n)$ and $k_n \to \infty$. Let $(\mathfrak{S}_n)_{n \ge 1}$ be a sequence with $\mathfrak{S}_n \subseteq \mathfrak{T}_{k_n}$. We have:

- 1 If $n\pi(S_n) \to 0$, then $N_{S_n}(\mathfrak{T}_n^{gw}) = 0$ whp.
- **2** If $n\pi(S_n) \to \mu \in (0, \infty)$, then $N_{S_n}(\mathfrak{I}_n^{gw}) \stackrel{d}{\to} Po(\mu)$.
- 3 If $n\pi(S_n) \to \infty$, then

$$\frac{\mathsf{N}_{\mathcal{S}_{\mathfrak{n}}}(\mathfrak{I}_{\mathfrak{n}}^{gw})-\mathfrak{n}\pi(\mathcal{S}_{\mathfrak{n}})}{\sqrt{\mathfrak{n}\pi(\mathcal{S}_{\mathfrak{n}})}} \stackrel{\mathrm{d}}{\to} \mathsf{N}(0,1).$$

4 If $\pi(\mathfrak{S}_n)/\pi(\mathfrak{T}_{k_n}) \to 0$, then

$$\lim_{n\to\infty} d_{\mathrm{TV}}\left(\mathsf{N}_{\mathcal{S}_n}(\mathfrak{I}_n^{gw}), \operatorname{Po}(\mathfrak{n}\pi(\mathcal{S}_n))\right) = 0.$$

Outline

1 Introduction

2 Large Fringe Subtrees

3 Large Fringe Subtrees—Applications

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

4 Large Non-Fringe Subtrees

Application 1—largest complete r-ary fringe subtree

Application 1—largest complete r-ary fringe subtree

Lemma 5.2 & 5.3

Let $H_{n,r}$ be the height of the largest complete r-ary fringe subtree in \mathfrak{T}_n^{gw} . Then for $r \ge 2$,

$$H_{n,r} - \log_r \log n \xrightarrow{p} - \alpha_r,$$

where α_r is a constant. And

$$\frac{\operatorname{H}_{n,1}\log(1/\mathbb{P}\left\{\xi=1\right\})}{\log n} \xrightarrow{p} 1.$$

Method:

- Find the maximum h such that $n\pi(T_h^{r-ary}) \to \infty$.
- Then apply Theorem 1.2.

Application 2—existence of all possible subtrees

• Let K_n be the maximum k such that \mathfrak{T}_n^{gw} contains all trees of size $\leq k$ as fringe subtree.

Original version

There are n types of coupons. Each time we draw one type of coupon *uniformly at random*. How many draws do we need to collect all n types?

Generalized version

There are n types of coupons. Each time we draw a coupon, we get type i with probability p_i . How many draws do we need to collect all n types?

Lemma 5.1 (Generalized coupon collector)

Assume X takes values in $\{1, ..., n\}$. Let $p_i \equiv \mathbb{P}\{X = i\}$. Let $X_1, X_2, ...$ be i.i.d. copies of X. Let

$$N \equiv \inf\{i \ge 1 : |\{X_1, X_2, \dots, X_i\}| = n\}.$$

Let m be a positive integers. We have

$$1 - \sum_{i=1}^{n} (1 - p_i)^{\mathfrak{m}} \leqslant \mathbb{P}\{\mathsf{N} \leqslant \mathfrak{m}\} \leqslant \frac{1}{\sum_{i=1}^{n} (1 - p_i)^{\mathfrak{m}}}$$

If $p_i = 1/n$, then $N = n \log(n) + o_p(1)$.

Connection to our problem

- Draw independent copies T^{gw}_k until every tree of size k has appeared.
- Let M_k be the number of draws.
- $\qquad \qquad \blacksquare \ N_{\mathfrak{T}_k}(\mathfrak{T}_n^{gw}) \approx \mathfrak{n}\pi(\mathfrak{T}_k).$
- So if nπ(ℑ_k) > M_k, then probably we have all trees of size k as fringe subtree, otherwise we do not.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is a coupon collector problem!

The least possible tree

- Among all coupons, there is one that is least likely to appear.
- If we get this one, we are likely to have all coupons.
- Let T_k^{min} be the least possible fringe subtree of size k.
- M_k depends on

$$p_k^{\min} \equiv \mathbb{P}\left\{ \mathbb{T}^{gw} = T_k^{\min} \right\}.$$

Lemma

- If $np_k^{min} \rightarrow 0$, then T_k^{min} does not appear.
- If $np_k^{min}/k \to \infty$, then all possible subtrees of size k appear.

What can we say about the least possible subtree?

- **p** $_{k}^{\min}$ certainly depends on ξ .
- But there is a small surprise.

Theorem 5.2

We have

$$(p_k^{\min})^{1/k} \to L$$

as $k \to \infty,$ where $0 \leqslant L < 1$ is a constant defined as

$$\mathbf{L} \equiv \inf_{\mathbf{i} \ge 1} \left\{ \mathbb{P}\{\xi = 0\} \left(\frac{\mathbb{P}\{\xi = \mathbf{i}\}}{\mathbb{P}\{\xi = 0\}} \right)^{1/\mathbf{i}} \right\}$$

Threshold of existence of all possible subtrees

By theorem 5.2, if L > 0, then $log(1/p_k^{min}) \sim k log(1/L)$.

•
$$K_n = \log_{1/L} n + o_p(1)$$
 in this case.

Theorem 5.1

Assume that as $k \to \infty$,

$$\log(1/p_k^{\min}) \sim \gamma k^{\alpha} (\log k)^{\beta}$$
,

where $\alpha \ge 1$, $\beta \ge 0$, $\gamma > 0$ are constants. Then

$$\frac{K_n}{\left(\log n/(\log \log n)^{\beta}\right)^{1/\alpha}} \xrightarrow{p} \left(\frac{\alpha^{\beta}}{\gamma}\right)^{1/\alpha}$$

Applications

GW Tree	ξ	$log(1/p_k^{\min})$	Kn
Full binary trees	$2\times Be(1/2)$	klog2	log ₂ n
Motzkin trees	$Unif(\{0, 1, 2\})$	klog3	log ₃ n
Binary trees	Bi(2,1/2)	klog4	$\log_4 n$
d-ary trees	Bi(d, 1/d)	$k \log c_d$	log _{c d} n
Plane trees	Ge(1/2)	k log 4	$\log_4 n$
Cayley trees	Po(1)	k log k	log n log log n

• c_d is constant.

• Cayley tree is different because it has L = 0.

Outline

1 Introduction

- 2 Large Fringe Subtrees
- 3 Large Fringe Subtrees—Applications

4 Large Non-Fringe Subtrees

Non-fringe subtrees

- **Take a fringe subtree** T_v **.**
- Replace some (or none) of T_v's own fringe subtrees with leaves.
- The result is a called a non-fringe subtree at v.

Non-fringe subtree count

Let N^{nf}_T(J^{gw}_n) be the number of non-fringe subtrees of shape T in J^{gw}_n.

Large Non-fringe subtree Count

- Let π^{nf}(T) be the prob. that T^{gw} has T as a non-fringe subtree at its root.
- We should have $N_T^{nf}(\mathfrak{T}_n^{gw}) \approx Bi(n, \pi^{nf}(T))$.

Theorem 1.4

Let T_n be a sequence of trees with $|T_n| = o(n)$. We have

- 1 If $n\pi^{nf}(T_n) \to 0$, then $N_{T_n}^{nf}(\mathfrak{T}_n^{gw}) = 0$ whp.
- **2** If $n\pi^{nf}(T_n) \to \infty$, then

$$\frac{N_{T_n}^{nf}(\mathfrak{I}_n^{gw})}{n\pi^{nf}(T_n)} \xrightarrow{p} 1.$$

Proof by computing first and second moments

Lemma 6.9 & 6.10

Assume that
$$|\mathsf{T}_{\mathsf{n}}| = \mathsf{o}(\mathsf{n})$$
 and $\mathsf{n}\pi^{\mathsf{n}f}(\mathsf{T}_{\mathsf{n}}) \to \infty$. We have

$$\mathbb{I} \mathbb{E} \left[\mathsf{N}_{\mathsf{T}_{\mathsf{n}}}^{\mathsf{n}f}(\mathfrak{T}_{\mathsf{n}}^{\mathsf{gw}}) \right] = (1 + \mathsf{o}(1))\mathsf{n}\pi^{\mathsf{n}f}(\mathsf{T}_{\mathsf{n}}).$$

$$\mathbb{2} \operatorname{Var} \left(\mathsf{N}_{\mathsf{T}_{\mathsf{n}}}^{\mathsf{n}f}(\mathfrak{T}_{\mathsf{n}}^{\mathsf{gw}}) \right) = \mathsf{o}(\mathsf{n}\pi^{\mathsf{n}f}(\mathsf{T}_{\mathsf{n}}))^{2}.$$

So Theorem 1.4 follows by Chebyshev's inequality.

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ♀ ○ 39/47

Difference between fringe and non-fringe subtrees

- Non-fringe subtrees can overlap.
- So it is more difficult to compute the second moment.

Glue two trees

Let $\{T \boxplus T\}$ be the trees that are two of T glued together.

The second factorial moment

Lemma 6.8

Assuming that |T| = o(n), we have

$$\begin{split} \mathbb{E}\left[\mathsf{N}_{\mathsf{T}}^{\mathtt{n}\mathtt{f}}(\mathfrak{T}_{\mathtt{n}}^{gw})(\mathsf{N}_{\mathsf{T}}^{\mathtt{n}\mathtt{f}}(\mathfrak{T}_{\mathtt{n}}^{gw})-1)\right] \approx \\ (\mathfrak{n}\pi^{\mathtt{n}\mathtt{f}}(\mathsf{T}))^{2} + 2\mathfrak{n}\sum_{\mathsf{T}'\in\{\mathsf{T}\mathtt{m}\mathsf{T}\}}\pi^{\mathtt{n}\mathtt{f}}(\mathsf{T}') \end{split}$$

- If the second term is $o(n\pi^{nf}(T))^2$ then we are done.
- Large $T' \in \{T \boxplus T\}$ should not be a problem.
- And there *cannot* be many small T' (with |T'| < 3/2|T|).

Application 1—largest complete r-ary non-fringe subtrees

Lemma 6.12 & 6.13

Let $\bar{H}_{n,r}$ be the height of the largest complete r-ary non-fringe subtree in \mathfrak{T}_n^{gw} . Then for $r \ge 2$,

$$\bar{H}_{n,r} - \log_r \log n \xrightarrow{p} - \alpha'_r.$$

And

$$\frac{\bar{H}_{n,1}\log(1/\mathbb{P}\left\{\xi=1\right\})}{\log n} \xrightarrow{p} 1.$$

Proof: Same as for fringe version.

Application 2-maximum degree

- A node of degree d can be seen as a non-fringe subtree that consists of the root and d-leaves.
- So Theorem 1.4 implies:

Theorem Meir and Moon (1991)

Assume that as $k \to \infty$,

$$\frac{1}{\mathbb{P}\left\{\xi=k\right\}^{1/k}} \to \rho > 1.$$

Let Y_n be the maximum degree in \mathfrak{T}_n^{gw} , then

$$\frac{\Upsilon_n}{\log n} \xrightarrow{p} \frac{1}{\log \rho}.$$

Open questions

■ For fringe subtrees, does

$$d_{TV}\left(N_{\mathfrak{T}_{k}}(\mathfrak{T}_{n}^{gw}), \operatorname{Po}(n\pi(\mathfrak{T}_{k})) \to 0, \right)$$

as $k \to \infty$?

- For non-fringe subtrees
 - A central limit theorem?
 - What is the total number of non-fringe subtrees in \mathcal{T}_n^{gw} ?

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < 0 45/47

Bibliography

- D. Aldous, "Asymptotic fringe distributions for general families of random trees," *The Annals of Applied Probability*, vol. 1, no. 2, pp. 228–266, 1991.

- I. J. Bienaymé, "De la loi de multiplication et de la durée des familles," *Société Philomatique Paris*, 1845, Reprinted in Kendall (1975).
- X. S. Cai, "A study of large fringe and non-fringe subtrees in conditional Galton-Watson trees," PhD thesis, McGill University, Aug. 2016.
 - X. S. Cai and L. Devroye, "A study of large fringe and non-fringe subtrees in conditional Galton-Watson trees," *Latin American Journal of Probability and Mathematical Statistics*, 2017, To appear. arXiv: 1602.03850 [math.PR].
 - S. Janson, "Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton-Watson trees," *Random Structures and Algorithms*, vol. 48, no. 1, pp. 57–101, 2016.

A. Meir and J. W. Moon, "On nodes of large out-degree in random trees," *Congressus Numerantium*, vol. 82, pp. 3–13, 1991.

N. Ross, "Fundamentals of Stein's method," *Probability Surveys*, vol. 8, pp. 210–293, 2011.

My coauthor

