Large fringe and non-fringe subtrees in conditional Galton-Watson trees

Xing Shi Cai, Luc Devroye

School of Computer Science
McGill University

Probabilistic Midwinter Meeting
Umeå University
Jan 18, 2017

Outline

1 Introduction

2 Large Fringe Subtrees

3 Large Fringe Subtrees-Applications

4 Large Non-Fringe Subtrees

What is a tree

- A tree is an acyclic graph.

■ In this talk, trees are unlabeled, rooted, and ordered (plane trees).

Galton-Watson trees

■ A Galton-Watson (GW) tree $\mathcal{T}^{\text {gw }}$ starts with a single node.
■ Each node in $\mathcal{T}^{\boldsymbol{q} w}$ chooses a random number of child nodes independently from the same distribution ξ.
■ Introduced by Bienaymé, 1845.

Note
We will always assume that $\mathbb{E} \xi=1$ and $\operatorname{Var}(\xi) \in(0, \infty)$.

Conditional Galton-Watson trees

■ A conditional GW Tree $\mathcal{T}_{n}^{g w}$ is $\mathcal{T}^{g w}$ restricted to $\left|\mathcal{T}^{g w}\right|=n$.
■ So $\mathbb{P}\left\{\mathcal{T}_{\mathfrak{n}}{ }^{\mathrm{w}}=\mathrm{T}\right\}=\mathbb{P}\left\{\mathcal{T}^{\mathfrak{g} w}=\mathrm{T}| | \mathcal{T}^{\mathfrak{g} w} \mid=\mathfrak{n}\right\}$.
■ It covers many uniform random tree models:

- full binary trees
- binary trees
- d-ary trees
- Motzkin trees
- Plane trees
- Cayley trees

Example of conditional Galton-Watson trees

■ Let $\mathbb{P}\{\xi=i\}=1 / 2^{i+1}$.
■ In other words, $\xi \stackrel{\mathcal{L}}{=} \operatorname{Ge}(1 / 2)$.
■ $\mathcal{T}_{n}^{g w}$ is uniformly distributed among all trees of size n.

Fringe subtrees

$■$ For a node v of a tree T, the fringe subtree T_{v} contains v and all its decedents.
■ It is what normally called a "subtree".

Fringe subtree count

■ Let $\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{n}^{g w}\right)$ be the number of fringe subtrees of shape T in $\mathcal{T}_{n}^{g w}$.

$$
\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{10}^{\mathrm{gw}}\right)=1
$$

Fringe subtree count: bigger example

■ In the next example,

$$
\frac{\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathfrak{n}}^{\mathrm{gw}}\right)}{\mathrm{n}}=\frac{15}{120}=\frac{1}{8}=\pi(\mathrm{T}) \equiv \mathbb{P}\left\{\mathcal{T}^{\mathrm{gw}}=\mathrm{T}\right\}
$$

■ Is this just a coincidence?

What is known

■ For large n, fringe subtrees in $\mathcal{T}_{n}^{g w}$ behave like independent copies of $\mathcal{T}^{g w}$.
■ Take a uniform random fringe subtree of $\mathcal{T}_{n}^{g w}$, the probability to get T is about $\pi(\mathrm{T}) \equiv \mathbb{P}\left\{\mathcal{T}^{\mathfrak{w}}=\mathrm{T}\right\}$.
■ So $\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathrm{n}}{ }^{\text {gw }}\right) \approx \operatorname{Bi}(\mathrm{n}, \pi(\mathrm{T}))$.

What is known cont.

Theorem Aldous (1991) (Law of large number)

As $\mathrm{n} \rightarrow \infty$,

$$
\frac{N_{\mathrm{T}}\left(\mathcal{T}_{n}^{\mathrm{gw}}\right)}{\mathrm{n}} \xrightarrow{\mathrm{p}} \pi(\mathrm{~T}) .
$$

Theorem Janson (2016) (Central limit theorm)

As $\mathrm{n} \rightarrow \infty$,

$$
\frac{\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathrm{n}}^{\mathrm{gw}}\right)-\mathrm{n} \pi(\mathrm{~T})}{\gamma \sqrt{\mathrm{n}}} \xrightarrow{\mathrm{~d}} \mathrm{~N}(0,1),
$$

where γ is a constant.

What do we want to know

- What if the T in $\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{n}^{g w}\right)$ changes with n ?
- The height of the largest complete r-ary fringe subtree.

■ The largest k such that $\mathcal{T}_{\mathfrak{n}}^{g w}$ contains all trees of size $\leqslant k$ as fringe subtree.
■ What about non-fringe subtrees?

Outline

1 Introduction

2 Large Fringe Subtrees

3 Large Fringe Subtrees-Applications

4 Large Non-Fringe Subtrees

Large fringe subtrees

■ If $\left|T_{n}\right| \rightarrow \infty$, then $\pi\left(T_{n}\right) \equiv \mathbb{P}\left\{\mathcal{T}^{g w}=T_{n}\right\} \rightarrow 0$.
■ Then we should have

$$
\mathrm{N}_{\mathrm{T}_{\mathrm{n}}}\left(\mathcal{T}_{n}^{\mathrm{gw}}\right) \approx \operatorname{Bi}\left(\mathrm{n}, \pi\left(\mathrm{~T}_{\mathrm{n}}\right)\right) \approx \operatorname{Po}\left(\mathrm{n} \pi\left(\mathrm{~T}_{\mathrm{n}}\right)\right) .
$$

Theorem 1.2

Let $\mathrm{k}_{\mathrm{n}}=\mathrm{o}(\mathrm{n})$ and $\mathrm{k}_{\mathrm{n}} \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \sup _{T:|T|=k_{n}} d_{T V}\left(N_{T}\left(\mathcal{T}_{n}^{g w}\right), \operatorname{Po}(n \pi(T))\right)=0 .
$$

Large fringe subtrees cont.

Theorem 1.2 cont.

So letting $\left(T_{n}\right)_{n \geqslant 1}$ be a sequence of trees with $\left|T_{n}\right|=k_{n}$, we have:
1 If $\mathrm{n} \pi\left(\mathrm{T}_{\mathrm{n}}\right) \rightarrow 0$, then $\mathrm{N}_{\mathrm{T}_{\mathrm{n}}}\left(\mathcal{T}_{\mathrm{n}}^{\mathrm{gw}}\right)=0$ whp.
2 If $n \pi\left(T_{n}\right) \rightarrow \mu \in(0, \infty)$, then $N_{T_{n}}\left(\mathcal{T}_{n}^{g w}\right) \xrightarrow{d} \operatorname{Po}(\mu)$.
3 If $n \pi\left(T_{n}\right) \rightarrow \infty$, then

$$
\frac{N_{T_{n}}\left(\mathcal{T}_{n}^{g w}\right)-n \pi\left(T_{n}\right)}{\sqrt{n \pi\left(T_{n}\right)}} \xrightarrow{d} N(0,1) .
$$

The degree sequence

- The degree of a node is the number of its children.
- The degree sequence of a tree, is the list of degrees of its nodes in Depth-First-Search order.
■ We can count fringe subtree through degree sequence.

Degree sequence:
$(2,1,0,3,0,0,0)$
$(1,0)$

Count fringe subtrees through the degree sequence

■ Let $\left(\xi_{1}^{n}, \ldots, \xi_{n}^{n}\right)$ be the degree sequence of $\mathcal{T}_{n}^{g w}$.
■ Let $\left(d_{1}, \ldots, d_{|T|}\right)$ be the degree sequence of T.

- Then $\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathrm{n}}^{\mathrm{gw}}\right)$ can be write as

$$
\begin{aligned}
N_{T}\left(\mathcal{T}_{n}^{g w}\right) & =\sum_{j=1}^{n} I_{j} \\
& \equiv \sum_{j=1}^{n} \mathbb{1}_{\left[\left(\xi_{j}^{n}, \ldots, \xi_{j+|T|-1}^{n}\right)=\left(d_{1}, \ldots, d_{|T|}\right)\right]}
\end{aligned}
$$

Why fringe subtrees are like unconditional Galton-Watson trees

- When n is large, $\xi_{1}^{n}, \ldots, \xi_{n}^{n}$ are close to $\xi_{1}, \ldots, \xi_{n}(n$ independent copies of ξ).
■ Thus

$$
\begin{aligned}
\mathbb{P}\left\{\mathrm{I}_{\mathrm{j}}=1\right\} & =\mathbb{P}\left\{\cap_{i=1}^{|\mathrm{T}|}\left[\xi_{j+i-1}^{n}=\mathrm{d}_{\mathrm{i}}\right]\right\} \\
& \approx \prod_{\mathrm{i}=1}^{|\mathrm{T}|} \mathbb{P}\left\{\xi_{i}=\mathrm{d}_{\mathrm{i}}\right\}=\mathbb{P}\left\{\mathcal{T}^{\mathrm{g} w}=\mathrm{T}\right\} \equiv \pi(\mathrm{T}) .
\end{aligned}
$$

■ So $\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}$ are close to iid Bernoulli $\pi(\mathrm{T})$.

- This is why
$\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathrm{n}}^{\mathrm{gw}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{j}} \approx \operatorname{Bi}(\mathrm{n}, \pi(\mathrm{T})) \approx \operatorname{Po}(\mathrm{n} \pi(\mathrm{T}))$.

The exchangeable pair method

- The proof of Theorem 1.2 uses the exchangeable pair method (Ross (2011, thm. 4.37)).
■ It is a variation of Stein's method for Poisson distribution.

Example

- Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be iid $\operatorname{Be}(p)$.

■ Let $W=X_{1}+\cdots+X_{n}$.

- Let $W^{\prime}=W-X_{Z}+Y_{Z}$ where $Z \stackrel{\mathcal{L}}{=} \operatorname{Unif}(\{1, \ldots, n\})$.
- We have an exchange pair $-\left(W, W^{\prime}\right) \stackrel{\mathcal{L}}{=}\left(W^{\prime}, W\right)$.
- Compute

$$
\mathbb{P}\left\{W^{\prime}=W-1 \mid X_{1}, \ldots, X_{n}\right\}, \quad \mathbb{P}\left\{W^{\prime}=W+1 \mid X_{1}, \ldots, X_{n}\right\} .
$$

- Then the method says $d_{T V}(W, \operatorname{Po}(\mathbb{E} W)) \leqslant p$.

Subtree replacing - the naive way

■ Recall $\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathrm{n}}^{g w}\right)=\sum_{i=1}^{n} \mathrm{I}_{\mathrm{i}}$.
■ What if we do the same thing for $\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathrm{n}}{ }^{\mathrm{w}}\right)$?
■ Let $\overline{\mathrm{N}}=\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathrm{n}}{ }^{\mathrm{gw}}\right)-\mathrm{I}_{\mathrm{Z}}+\mathrm{I}_{\mathrm{Z}}^{\prime}$ with $\mathrm{I}_{\mathrm{Z}}^{\prime} \stackrel{\mathcal{L}}{=} \mathrm{I}_{\mathrm{Z}}$.
■ Is $\left(\overline{\mathrm{N}}, \mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{n}^{g w}\right)\right)$ an exchangeable pair?

Subtree replacing - the proper way

■ Choose a fringe subtree of $\mathcal{T}_{n}^{g w}$ uniformly at random.

- If its size is not the same as T , do nothing.
- Otherwise, replace it with $\mathcal{T}_{|\mathrm{T}|}^{g w}$.

■ Let $\overline{\mathrm{N}}$ be the number of T in the new tree.
■ Then $\left(N_{T}\left(\mathcal{T}_{n}^{g w}\right), \bar{N}\right)$ is an exchangeable pair.

Upper bound of the total variation distance

\square Let \mathfrak{I}_{k} be the set of all trees of size k.
■ Let $\mathcal{S} \subseteq \mathfrak{I}_{k}$.
\square Let $N_{\mathcal{S}}\left(\mathcal{T}_{n}^{g w}\right)$ be the number of fringe subtrees that belongs to \mathcal{S}.

■ Let $\pi(\mathcal{S}) \equiv \mathbb{P}\left\{\mathcal{T}^{g w} \in \mathcal{S}\right\}$.
$■$ So $\mathrm{N}_{\mathrm{T}}\left(\mathcal{T}_{\mathfrak{n}}^{\mathrm{gw}}\right)=\mathrm{N}_{\{\mathrm{T}\}}\left(\mathcal{T}_{\mathfrak{n}}^{g w}\right)$.

Lemma 4.1

Let $\mathrm{k}=\mathrm{k}_{\mathrm{n}}=\mathrm{o}(\mathrm{n})$ and $\mathrm{k} \rightarrow \infty$. We have
$\sup _{\mathcal{S} \subseteq \mathfrak{I}_{k}} \frac{\mathrm{~d}_{\mathrm{TV}}\left(\mathrm{N}_{\mathcal{S}}\left(\mathcal{T}_{n}^{\mathrm{gw}}\right), \operatorname{Po}(\mathrm{n} \pi(\mathcal{S}))\right)}{\pi(\mathcal{S}) / \pi\left(\mathfrak{I}_{\mathrm{k}}\right)+\sqrt{\pi(\mathcal{S}) / \pi\left(\mathfrak{I}_{k}\right)}} \leqslant 1+\mathrm{o}\left(\mathrm{k}^{-3 / 2}\right)+\mathrm{O}\left(\frac{\mathrm{k}^{1 / 4}}{\sqrt{n}}\right)$.

Large fringe subtrees count-set version

Theorem 1.3

Let \mathfrak{I}_{k} be the set of trees of size k. Let $k_{n}=\mathrm{o}(\mathrm{n})$ and $\mathrm{k}_{\mathrm{n}} \rightarrow \infty$. Let $\left(S_{n}\right)_{n \geqslant 1}$ be a sequence with $\mathcal{S}_{n} \subseteq \mathfrak{I}_{k_{n}}$. We have:
1 If $\mathrm{n} \pi\left(\mathcal{S}_{\mathrm{n}}\right) \rightarrow 0$, then $\mathrm{N}_{\mathcal{S}_{\mathrm{n}}}\left(\mathcal{T}_{n}^{g w}\right)=0$ whp.
2 If $n \pi\left(S_{n}\right) \rightarrow \mu \in(0, \infty)$, then $\mathrm{N}_{\mathcal{S}_{\mathfrak{n}}}\left(\mathcal{T}_{n}^{g w}\right) \xrightarrow{\mathrm{d}} \operatorname{Po}(\mu)$.
3 If $n \pi\left(S_{n}\right) \rightarrow \infty$, then

$$
\frac{N_{S_{n}}\left(\mathcal{T}_{n}^{g w}\right)-n \pi\left(\mathcal{S}_{n}\right)}{\left.\sqrt{n \pi\left(S_{n}\right.}\right)} \xrightarrow{d} N(0,1) .
$$

4 If $\pi\left(\mathcal{S}_{n}\right) / \pi\left(\mathfrak{I}_{k_{n}}\right) \rightarrow 0$, then

$$
\lim _{n \rightarrow \infty} d_{T V}\left(N_{\mathcal{S}_{n}}\left(\mathcal{T}_{n}^{g w}\right), \operatorname{Po}\left(n \pi\left(\mathcal{S}_{n}\right)\right)\right)=0 .
$$

Outline

1 Introduction

2 Large Fringe Subtrees

3 Large Fringe Subtrees-Applications

4 Large Non-Fringe Subtrees

Application 1-largest complete r-ary fringe subtree

■ Let $T_{h}^{r-a r y}$ be a complete r-ary tree of height h.

Application 1-largest complete r-ary fringe subtree

Lemma 5.2 \& 5.3

Let $\mathrm{H}_{n, \mathrm{r}}$ be the height of the largest complete r -ary fringe subtree in $\mathcal{T}_{\mathrm{n}}^{\mathrm{gw}}$. Then for $\mathrm{r} \geqslant 2$,

$$
\mathrm{H}_{\mathrm{n}, \mathrm{r}}-\log _{\mathrm{r}} \log n \xrightarrow{p}-\alpha_{\mathrm{r}},
$$

where α_{r} is a constant. And

$$
\frac{\mathrm{H}_{n, 1} \log (1 / \mathbb{P}\{\xi=1\})}{\log n} \stackrel{p}{\rightarrow} 1 .
$$

Method:
■ Find the maximum h such that $n \pi\left(T_{h}^{r-a r y}\right) \rightarrow \infty$.

- Then apply Theorem 1.2.

Application 2-existence of all possible subtrees

■ Let K_{n} be the maximum k such that $\mathcal{T}_{n}^{g w}$ contains all trees of size $\leqslant k$ as fringe subtree.

The coupon collector problem

Original version

There are n types of coupons. Each time we draw one type of coupon uniformly at random. How many draws do we need to collect all n types?

Generalized version

There are n types of coupons. Each time we draw a coupon, we get type i with probability p_{i}. How many draws do we need to collect all n types?

The coupon collector problem: the answer

Lemma 5.1 (Generalized coupon collector)

Assume X takes values in $\{1, \ldots, n\}$. Let $\mathrm{p}_{\mathrm{i}} \equiv \mathbb{P}\{\mathrm{X}=\mathrm{i}\}$. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ be i.i.d. copies of X . Let

$$
N \equiv \inf \left\{i \geqslant 1:\left|\left\{X_{1}, X_{2}, \ldots, X_{i}\right\}\right|=n\right\} .
$$

Let m be a positive integers. We have

$$
1-\sum_{i=1}^{n}\left(1-p_{i}\right)^{m} \leqslant \mathbb{P}\{N \leqslant m\} \leqslant \frac{1}{\sum_{i=1}^{n}\left(1-p_{i}\right)^{m}}
$$

If $p_{i}=1 / n$, then $N=n \log (n)+o_{p}(1)$.

Connection to our problem

■ Draw independent copies $\mathcal{T}_{k}^{g w}$ until every tree of size k has appeared.
\square Let M_{k} be the number of draws.
$\square \mathrm{N}_{\mathfrak{I}_{\mathrm{k}}}\left(\mathcal{T}_{\mathfrak{n}}^{\mathfrak{g w}}\right) \approx \mathfrak{n} \pi\left(\mathfrak{I}_{\mathrm{k}}\right)$.
■ So if $n \pi\left(\mathfrak{I}_{k}\right)>M_{k}$, then probably we have all trees of size k as fringe subtree, otherwise we do not.
■ This is a coupon collector problem!

The least possible tree

■ Among all coupons, there is one that is least likely to appear.
■ If we get this one, we are likely to have all coupons.
$■$ Let $T_{k}^{\min }$ be the least possible fringe subtree of size k.

- M_{k} depends on

$$
p_{k}^{\min } \equiv \mathbb{P}\left\{\mathcal{T}^{g w}=\mathrm{T}_{\mathrm{k}}^{\min }\right\}
$$

Lemma

- If $\mathrm{np}_{\mathrm{k}}^{\min } \rightarrow 0$, then $\mathrm{T}_{\mathrm{k}}^{\min }$ does not appear.
- If $n p_{\mathrm{k}}^{\min } / \mathrm{k} \rightarrow \infty$, then all possible subtrees of size k appear.

What can we say about the least possible subtree?

- $\mathrm{p}_{\mathrm{k}}^{\min }$ certainly depends on ξ.

■ But there is a small surprise.

Theorem 5.2

We have

$$
\left(p_{k}^{\min }\right)^{1 / k} \rightarrow L
$$

as $k \rightarrow \infty$, where $0 \leqslant L<1$ is a constant defined as

$$
L \equiv \inf _{i \geqslant 1}\left\{\mathbb{P}\{\xi=0\}\left(\frac{\mathbb{P}\{\xi=i\}}{\mathbb{P}\{\xi=0\}}\right)^{1 / i}\right\} .
$$

Threshold of existence of all possible subtrees

■ By theorem 5.2, if $L>0$, then $\log \left(1 / p_{k}^{m i n}\right) \sim \mathrm{k} \log (1 / L)$.

- $K_{n}=\log _{1 / L} n+o_{p}(1)$ in this case.

Theorem 5.1

Assume that as $\mathrm{k} \rightarrow \infty$,

$$
\log \left(1 / \mathrm{p}_{\mathrm{k}}^{\min }\right) \sim \gamma \mathrm{k}^{\alpha}(\log k)^{\beta}
$$

where $\alpha \geqslant 1, \beta \geqslant 0, \gamma>0$ are constants. Then

$$
\frac{K_{n}}{\left(\log n /(\log \log n)^{\beta}\right)^{1 / \alpha}} \stackrel{p}{\rightarrow}\left(\frac{\alpha^{\beta}}{\gamma}\right)^{1 / \alpha} .
$$

Applications

GW Tree	ξ	$\log \left(1 / p_{k}^{\min }\right)$	K_{n}
Full binary trees	$2 \times \operatorname{Be}(1 / 2)$	$\mathrm{k} \log 2$	$\log _{2} n$
Motzkin trees	$\operatorname{Unif}(\{0,1,2\})$	$\mathrm{k} \log 3$	$\log _{3} n$
Binary trees	$\operatorname{Bi}(2,1 / 2)$	$\mathrm{k} \log 4$	$\log _{4} n$
d-ary trees	$\operatorname{Bi}(\mathrm{d}, 1 / \mathrm{d})$	$\mathrm{k} \log c_{d}$	$\log _{\mathrm{c}_{\mathrm{d}}} n$
Plane trees	$\mathrm{Ge}(1 / 2)$	$\mathrm{k} \log 4$	$\log _{4} n$
Cayley trees	$\operatorname{Po}(1)$	$k \log k$	$\frac{\log _{n}}{\log ^{\log n}}$

- c_{d} is constant.
- Cayley tree is different because it has $L=0$.

Outline

1 Introduction

2 Large Fringe Subtrees

3 Large Fringe Subtrees-Applications

4 Large Non-Fringe Subtrees

Non-fringe subtrees

■ Take a fringe subtree T_{v}.
■ Replace some (or none) of T_{ν} 's own fringe subtrees with leaves.

- The result is a called a non-fringe subtree at v.

Non-fringe subtree count

■ Let $\mathrm{N}_{\mathrm{T}}^{\mathrm{nf}}\left(\mathcal{T}_{\mathrm{n}}^{\mathrm{gw}}\right)$ be the number of non-fringe subtrees of shape T in $\mathfrak{T}_{\mathrm{n}}^{\mathrm{g} w}$.

$$
\mathrm{N}_{\mathrm{T}}^{\mathrm{nf}}\left(\mathcal{T}_{10}^{\mathrm{gw}}\right)=2
$$

Large Non-fringe subtree Count

$■$ Let $\pi^{n f}(T)$ be the prob. that $\mathcal{T}^{\mathfrak{w}}$ has T as a non-fringe subtree at its root.
■ We should have $\mathrm{N}_{\mathrm{T}}^{\mathrm{nf}}\left(\mathcal{T}_{n}^{g w}\right) \approx \operatorname{Bi}\left(\mathrm{n}, \pi^{\mathrm{nf}}(\mathrm{T})\right)$.

Theorem 1.4

Let T_{n} be a sequence of trees with $\left|T_{n}\right|=o(n)$. We have
1 If $n \pi^{\mathrm{nf}}\left(\mathrm{T}_{\mathrm{n}}\right) \rightarrow 0$, then $\mathrm{N}_{\mathrm{T}_{\mathrm{n}}}^{\mathrm{n}^{\mathrm{f}}}\left(\mathcal{T}_{\mathrm{n}}^{\mathrm{gw}}\right)=0$ whp.
2 If $n \pi^{n f}\left(T_{n}\right) \rightarrow \infty$, then

$$
\frac{\mathrm{N}_{\mathrm{T}_{n}}^{\mathrm{f}}\left(\mathcal{T}_{n}^{g w}\right)}{\mathrm{n} \pi^{n f}\left(\mathrm{~T}_{\mathrm{n}}\right)} \xrightarrow{p} 1 .
$$

Proof by computing first and second moments

Lemma 6.9 \& 6.10

Assume that $\left|\mathrm{T}_{\mathrm{n}}\right|=\mathrm{o}(\mathrm{n})$ and $\mathrm{n} \pi^{\mathrm{nf}}\left(\mathrm{T}_{\mathrm{n}}\right) \rightarrow \infty$. We have
$1 \mathbb{E}\left[N_{T_{n}}^{n f}\left(\mathcal{T}_{n}^{g w}\right)\right]=(1+o(1)) n \pi^{n f}\left(T_{n}\right)$.
$2 \operatorname{Var}\left(N_{T_{n}}^{n f}\left(\mathcal{T}_{n}^{g w}\right)\right)=o\left(n \pi^{n f}\left(T_{n}\right)\right)^{2}$.
So Theorem 1.4 follows by Chebyshev's inequality.

Difference between fringe and non-fringe subtrees

- Non-fringe subtrees can overlap.

■ So it is more difficult to compute the second moment.

Glue two trees

Let $\{T \boxplus T\}$ be the trees that are two of T glued together.

The second factorial moment

Lemma 6.8

Assuming that $|\mathrm{T}|=\mathrm{o}(\mathrm{n})$, we have

$$
\begin{aligned}
& \mathbb{E}\left[N_{T}^{n f}\left(\mathcal{T}_{n}^{g w}\right)\left(N_{T}^{n f}\left(\mathcal{T}_{n}^{g w}\right)-1\right)\right] \approx \\
& \quad\left(n \pi^{n f}(T)\right)^{2}+2 n \sum_{T^{\prime} \in\{T \boxplus T\}} \pi^{n f}\left(T^{\prime}\right)
\end{aligned}
$$

\square If the second term is $o\left(n \pi^{n f}(T)\right)^{2}$ then we are done.
$■$ Large $T^{\prime} \in\{T \boxplus T\}$ should not be a problem.
■ And there cannot be many small T^{\prime} (with $\left|\mathrm{T}^{\prime}\right|<3 / 2|\mathrm{~T}|$).

Application 1—largest complete r-ary non-fringe subtrees

Lemma 6.12 \& 6.13

Let $\overline{\mathrm{H}}_{n, r}$ be the height of the largest complete r -ary non-fringe subtree in $\mathcal{T}_{n}^{g w}$. Then for $r \geqslant 2$,

$$
\overline{\mathrm{H}}_{n, \mathrm{r}}-\log _{\mathrm{r}} \log n \xrightarrow{p}-\alpha_{\mathrm{r}}^{\prime} .
$$

And

$$
\frac{\overline{\mathrm{H}}_{n, 1} \log (1 / \mathbb{P}\{\xi=1\})}{\log n} \stackrel{p}{\rightarrow} 1 .
$$

Proof: Same as for fringe version.

Application 2-maximum degree

■ A node of degree d can be seen as a non-fringe subtree that consists of the root and d-leaves.
■ So Theorem 1.4 implies:

Theorem Meir and Moon (1991)

Assume that as $\mathrm{k} \rightarrow \infty$,

$$
\frac{1}{\mathbb{P}\{\xi=k\}^{1 / k}} \rightarrow \rho>1
$$

Let Y_{n} be the maximum degree in $\mathcal{T}_{n}^{g w}$, then

$$
\frac{Y_{n}}{\log n} \xrightarrow{p} \frac{1}{\log \rho} .
$$

Open questions

■ For fringe subtrees, does

$$
\mathrm{d}_{\mathrm{TV}}\left(\mathrm{~N}_{\mathfrak{I}_{\mathrm{k}}}\left(\mathfrak{T}_{\mathfrak{n}}^{g w}\right), \operatorname{Po}\left(\mathrm{n} \pi\left(\mathfrak{I}_{\mathrm{k}}\right)\right) \rightarrow 0,\right.
$$

as $k \rightarrow \infty$?

- For non-fringe subtrees
- A central limit theorem?
- What is the total number of non-fringe subtrees in $\mathfrak{T}_{\mathfrak{n}}^{g w}$?

Bibliography

\square D．Aldous，＂Asymptotic fringe distributions for general families of random trees，＂The Annals of Applied Probability，vol．1，no．2，pp．228－266， 1991.

I．J．Bienaymé，＂De la loi de multiplication et de la durée des familles，＂Société Philomatique Paris，1845，Reprinted in Kendall（1975）．

X．S．Cai，＂A study of large fringe and non－fringe subtrees in conditional Galton－Watson trees，＂PhD thesis，McGill University，Aug． 2016.

宣
X．S．Cai and L．Devroye，＂A study of large fringe and non－fringe subtrees in conditional Galton－Watson trees，＂Latin American Journal of Probability and Mathematical Statistics，2017，To appear．arXiv： 1602.03850 ［math．PR］．
国
S．Janson，＂Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton－Watson trees，＂Random Structures and Algorithms，vol．48，no． 1，pp．57－101， 2016.

A．Meir and J．W．Moon，＂On nodes of large out－degree in random trees，＂ Congressus Numerantium，vol．82，pp．3－13， 1991.
目
N．Ross，＂Fundamentals of Stein＇s method，＂Probability Surveys，vol．8， pp．210－293， 2011.

My coauthor

