
1/47

Large fringe and non-fringe subtrees in
conditional Galton-Watson trees

Xing Shi Cai, Luc Devroye

School of Computer Science
McGill University

Probabilistic Midwinter Meeting
Umeå University

Jan 18, 2017



2/47

Outline

1 Introduction

2 Large Fringe Subtrees

3 Large Fringe Subtrees—Applications

4 Large Non-Fringe Subtrees



3/47

What is a tree

A tree is an acyclic graph.
In this talk, trees are unlabeled, rooted, and ordered (plane
trees).
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Galton-Watson trees

A Galton-Watson (GW) tree Tgw starts with a single node.
Each node in Tgw chooses a random number of child
nodes independently from the same distribution ξ.
Introduced by Bienaymé, 1845.
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Note

We will always assume that Eξ = 1 and Var (ξ) ∈ (0,∞).
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Conditional Galton-Watson trees

A conditional GW Tree T
gw
n is Tgw restricted to |Tgw| = n.

So P
{
T
gw
n = T

}
= P {Tgw = T | |Tgw| = n} .

It covers many uniform random tree models:
full binary trees
binary trees
d-ary trees
Motzkin trees
Plane trees
Cayley trees
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Example of conditional Galton-Watson trees

Let P {ξ = i} = 1/2i+1.

In other words, ξ L
= Ge(1/2).

T
gw
n is uniformly distributed among all trees of size n.

P {Tgw = T } = 2−7 for T ∈

{ }
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Fringe subtrees

For a node v of a tree T , the fringe subtree Tv contains v and
all its decedents.
It is what normally called a “subtree”.
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Fringe subtree count

Let NT (T
gw
n ) be the number of fringe subtrees of shape T

in T
gw
n .
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Fringe subtree count: bigger example

In the next example,

NT (T
gw
n )

n
=

15
120

=
1
8
= π(T) ≡ P {Tgw = T } .

Is this just a coincidence?
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What is known

For large n, fringe subtrees in T
gw
n behave like

independent copies of Tgw.
Take a uniform random fringe subtree of Tgwn , the
probability to get T is about π(T) ≡ P {Tgw = T }.
So NT (T

gw
n ) ≈ Bi(n,π(T)).
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What is known cont.

Theorem Aldous (1991) (Law of large number)

As n→∞,
NT (T

gw
n )

n

p→π(T).

Theorem Janson (2016) (Central limit theorm)

As n→∞,
NT (T

gw
n ) − nπ(T)

γ
√
n

d→N(0, 1),

where γ is a constant.
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What do we want to know

What if the T in NT (T
gw
n ) changes with n?

The height of the largest complete r-ary fringe subtree.
The largest k such that Tgwn contains all trees of size 6 k as
fringe subtree.
What about non-fringe subtrees?



13/47

Outline

1 Introduction

2 Large Fringe Subtrees

3 Large Fringe Subtrees—Applications

4 Large Non-Fringe Subtrees



14/47

Large fringe subtrees

If |Tn|→∞, then π(Tn) ≡ P {Tgw = Tn}→ 0.
Then we should have

NTn(T
gw
n ) ≈ Bi(n,π(Tn)) ≈ Po(nπ(Tn)).

Theorem 1.2

Let kn = o(n) and kn →∞. Then

lim
n→∞ sup

T :|T |=kn

dTV (NT (T
gw
n ), Po(nπ(T))) = 0.
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Large fringe subtrees cont.

Theorem 1.2 cont.

So letting (Tn)n>1 be a sequence of trees with |Tn| = kn, we have:
1 If nπ(Tn)→ 0, then NTn(T

gw
n ) = 0 whp.

2 If nπ(Tn)→ µ ∈ (0,∞), then NTn(T
gw
n )

d→ Po(µ).
3 If nπ(Tn)→∞, then

NTn(T
gw
n ) − nπ(Tn)√
nπ(Tn)

d→N(0, 1).



16/47

The degree sequence

The degree of a node is the number of its children.
The degree sequence of a tree, is the list of degrees of its
nodes in Depth-First-Search order.
We can count fringe subtree through degree sequence.

1

2

3

4

5 6 7

1

2

Degree sequence:

T1 T2

(2, 1, 0, 3, 0, 0, 0) (1, 0)
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Count fringe subtrees through the degree sequence

Let (ξn1 , . . . , ξnn) be the degree sequence of Tgwn .
Let (d1, . . . ,d|T |) be the degree sequence of T .
Then NT (T

gw
n ) can be write as

NT (T
gw
n ) =

n∑
j=1

Ij

≡
n∑
j=1

1[
(ξnj ,...,ξn

j+|T |−1)=(d1,...,d|T |)
].
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Why fringe subtrees are like unconditional
Galton-Watson trees

When n is large, ξn1 , . . . , ξnn are close to ξ1, . . . , ξn (n
independent copies of ξ).
Thus

P
{
Ij = 1

}
= P
{
∩|T |i=1

[
ξnj+i−1 = di

]}
≈

|T |∏
i=1

P {ξi = di} = P {Tgw = T } ≡ π(T).

So I1, . . . , In are close to iid Bernoulli π(T).
This is why
NT (T

gw
n ) =

∑n
j=1 Ij ≈ Bi(n,π(T)) ≈ Po(nπ(T)).



19/47

The exchangeable pair method

The proof of Theorem 1.2 uses the exchangeable pair
method (Ross (2011, thm. 4.37)).
It is a variation of Stein’s method for Poisson distribution.

Example

Let X1, . . . ,Xn and Y1, . . . ,Yn be iid Be(p).

LetW = X1 + · · ·+ Xn.

LetW ′ =W − XZ + YZ where Z L
= Unif({1, . . . ,n}).

We have an exchange pair — (W,W ′) L
=(W ′,W).

Compute

P {W ′ =W − 1 | X1, . . . ,Xn} , P {W ′ =W + 1 | X1, . . . ,Xn} .

Then the method says dTV (W, Po(EW)) 6 p.
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Subtree replacing – the naive way

Recall NT (T
gw
n ) =

∑n
i=1 Ii.

What if we do the same thing for NT (T
gw
n )?

Let N̄ = NT (T
gw
n ) − IZ + I ′Z with I ′Z

L
= IZ.

Is (N̄,NT (T
gw
n )) an exchangeable pair?
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Subtree replacing – the proper way

Choose a fringe subtree of Tgwn uniformly at random.
If its size is not the same as T , do nothing.
Otherwise, replace it with T

gw
|T |

.

Let N̄ be the number of T in the new tree.
Then (NT (T

gw
n ), N̄) is an exchangeable pair.

T
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Upper bound of the total variation distance

Let Tk be the set of all trees of size k.
Let S ⊆ Tk.
Let NS(T

gw
n ) be the number of fringe subtrees that belongs

to S.
Let π(S) ≡ P {Tgw ∈ S}.
So NT (T

gw
n ) = N{T}(T

gw
n ).

Lemma 4.1

Let k = kn = o(n) and k→∞. We have

sup
S⊆Tk

dTV
(
NS(T

gw
n ), Po(nπ(S))

)
π(S)/π(Tk) +

√
π(S)/π(Tk)

6 1 + o
(
k−3/2

)
+O

(
k1/4
√
n

)
.
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Large fringe subtrees count—set version

Theorem 1.3

Let Tk be the set of trees of size k. Let kn = o(n) and kn →∞. Let
(Sn)n>1 be a sequence with Sn ⊆ Tkn . We have:

1 If nπ(Sn)→ 0, then NSn(T
gw
n ) = 0 whp.

2 If nπ(Sn)→ µ ∈ (0,∞), then NSn(T
gw
n )

d→ Po(µ).
3 If nπ(Sn)→∞, then

NSn(T
gw
n ) − nπ(Sn)√
nπ(Sn)

d→N(0, 1).

4 If π(Sn)/π(Tkn)→ 0, then

lim
n→∞dTV (NSn(T

gw
n ), Po(nπ(Sn))) = 0.
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Application 1—largest complete r-ary fringe subtree

Let Tr-ary
h be a complete r-ary tree of height h.
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Application 1—largest complete r-ary fringe subtree

Lemma 5.2 & 5.3

Let Hn,r be the height of the largest complete r-ary fringe subtree in
T
gw
n . Then for r > 2,

Hn,r − logr logn
p→ − αr,

where αr is a constant. And

Hn,1 log(1/P {ξ = 1})
logn

p→ 1.

Method:
Find the maximum h such that nπ(Tr-ary

h )→∞.
Then apply Theorem 1.2.



27/47

Application 2—existence of all possible subtrees

Let Kn be the maximum k such that Tgwn contains all trees
of size 6 k as fringe subtree.
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The coupon collector problem

Original version

There are n types of coupons. Each time we draw one type of
coupon uniformly at random. How many draws do we need to
collect all n types?

Generalized version

There are n types of coupons. Each time we draw a coupon, we
get type iwith probability pi. How many draws do we need to
collect all n types?
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The coupon collector problem: the answer

Lemma 5.1 (Generalized coupon collector)

Assume X takes values in {1, . . . ,n}. Let pi ≡ P {X = i}. Let
X1,X2, . . . be i.i.d. copies of X. Let

N ≡ inf{i > 1 : |{X1,X2, . . . ,Xi}| = n}.

Letm be a positive integers. We have

1 −

n∑
i=1

(1 − pi)
m 6 P {N 6 m} 6

1∑n
i=1(1 − pi)m

.

If pi = 1/n, then N = n log(n) + op(1).



30/47

Connection to our problem

Draw independent copies Tgwk until every tree of size k has
appeared.
LetMk be the number of draws.
NTk(T

gw
n ) ≈ nπ(Tk).

So if nπ(Tk) > Mk, then probably we have all trees of size
k as fringe subtree, otherwise we do not.
This is a coupon collector problem!
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The least possible tree

Among all coupons, there is one that is least likely to
appear.
If we get this one, we are likely to have all coupons.
Let Tmin

k be the least possible fringe subtree of size k.
Mk depends on

pmink ≡ P
{
Tgw = Tmin

k

}
.

Lemma

If npmink → 0, then Tmin
k does not appear.

If npmink /k→∞, then all possible subtrees of size k appear.
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What can we say about the least possible subtree?

pmink certainly depends on ξ.
But there is a small surprise.

Theorem 5.2

We have
(pmink )1/k → L

as k→∞, where 0 6 L < 1 is a constant defined as

L ≡ inf
i>1

{
P {ξ = 0}

(
P {ξ = i}

P {ξ = 0}

)1/i
}

.
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Threshold of existence of all possible subtrees

By theorem 5.2, if L > 0, then log(1/pmink ) ∼ k log(1/L).
Kn = log1/L n+ op(1) in this case.

Theorem 5.1

Assume that as k→∞,

log(1/pmink ) ∼ γkα(logk)β,

where α > 1, β > 0, γ > 0 are constants. Then

Kn

(logn/(log logn)β)1/α
p→
(
αβ

γ

)1/α

.
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Applications

GW Tree ξ log(1/pmink ) Kn

Full binary trees 2× Be(1/2) k log 2 log2 n

Motzkin trees Unif({0, 1, 2}) k log 3 log3 n

Binary trees Bi(2, 1/2) k log 4 log4 n

d-ary trees Bi(d, 1/d) k log cd logcd n

Plane trees Ge(1/2) k log 4 log4 n

Cayley trees Po(1) k logk logn
log logn

cd is constant.
Cayley tree is different because it has L = 0.
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Non-fringe subtrees

Take a fringe subtree Tv.
Replace some (or none) of Tv’s own fringe subtrees with
leaves.
The result is a called a non-fringe subtree at v.

Not a non-fringe 
subtree !
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Non-fringe subtree count

Let NnfT (Tgwn ) be the number of non-fringe subtrees of
shape T in T

gw
n .
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Large Non-fringe subtree Count

Let πnf(T) be the prob. that Tgw has T as a non-fringe
subtree at its root.
We should have NnfT (Tgwn ) ≈ Bi(n,πnf(T)).

Theorem 1.4

Let Tn be a sequence of trees with |Tn| = o(n). We have
1 If nπnf(Tn)→ 0, then NnfTn (T

gw
n ) = 0 whp.

2 If nπnf(Tn)→∞, then

NnfTn (T
gw
n )

nπnf(Tn)

p→ 1.
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Proof by computing first and second moments

Lemma 6.9 & 6.10

Assume that |Tn| = o(n) and nπnf(Tn)→∞. We have

1 E
[
NnfTn (T

gw
n )

]
= (1 + o(1))nπnf(Tn).

2 Var
(
NnfTn (T

gw
n )

)
= o(nπnf(Tn))

2.

So Theorem 1.4 follows by Chebyshev’s inequality.
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Difference between fringe and non-fringe subtrees

Non-fringe subtrees can overlap.
So it is more difficult to compute the second moment.
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Glue two trees

Let {T � T } be the trees that are two of T glued together.
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The second factorial moment

Lemma 6.8

Assuming that |T | = o(n), we have

E
[
NnfT (Tgwn )(NnfT (Tgwn ) − 1)

]
≈

(nπnf(T))2 + 2n
∑

T ′∈{T�T}

πnf(T ′)

If the second term is o(nπnf(T))2 then we are done.
Large T ′ ∈ {T � T } should not be a problem.
And there cannot be many small T ′ (with |T ′| < 3/2|T |).
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Application 1—largest complete r-ary non-fringe
subtrees

Lemma 6.12 & 6.13

Let H̄n,r be the height of the largest complete r-ary non-fringe subtree
in T

gw
n . Then for r > 2,

H̄n,r − logr logn
p→ − α ′r.

And
H̄n,1 log(1/P {ξ = 1})

logn
p→ 1.

Proof: Same as for fringe version.
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Application 2—maximum degree

A node of degree d can be seen as a non-fringe subtree that
consists of the root and d-leaves.
So Theorem 1.4 implies:

Theorem Meir and Moon (1991)

Assume that as k→∞,

1

P {ξ = k}1/k
→ ρ > 1.

Let Yn be the maximum degree in T
gw
n , then

Yn

logn
p→ 1

log ρ
.
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Open questions

For fringe subtrees, does

dTV
(
NTk(T

gw
n ), Po(nπ(Tk)

)
→ 0,

as k→∞?
For non-fringe subtrees

A central limit theorem?
What is the total number of non-fringe subtrees in T

gw
n ?
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