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What is a tree

m A tree is an acyclic graph.

m In this talk, trees are unlabeled, rooted, and ordered (plane
trees).

A TLA
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Galton-Watson trees

m A Galton-Watson (GW) tree T9" starts with a single node.

m Each node in 79" chooses a random number of child
nodes independently from the same distribution &.

m Introduced by Bienaymé, 1845.

Note
We will always assume that EE = 1 and Var (&) € (0, 00).
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Conditional Galton-Watson trees

m A conditional GW Tree 72" is T9" restricted to |[T9"| = n.
m SoP{T" =T} =P{T9 =T||T9 =n}.
m It covers many uniform random tree models:

m full binary trees
m binary trees
d-ary trees
Motzkin trees
Plane trees
Cayley trees
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Example of conditional Galton-Watson trees

m LetP{§ =i} =1/21FL
m In other words, éé Ge(1/2).

m J3" is uniformly distributed among all trees of size n.

e A
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Fringe subtrees

m For anode v of a tree T, the fringe subtree T, contains v and
all its decedents.
m [tis what normally called a “subtree”.

T
Ty
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Fringe subtree count

m Let N7 (T3") be the number of fringe subtrees of shape T
in 79",

Tio T

N\

Nr(T7") =1
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Fringe subtree count: bigger example

m In the next example,

Nr(IR™%) 15 1 — PITIW _

m [s this just a coincidence?

gw
7120

&~ Ge(1/2)
Ny (T9Y) =15
n(T)=1/8
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What is known

m For large n, fringe subtrees in 73" behave like
independent copies of T9™.

m Take a uniform random fringe subtree of 73", the
probability to get T is about 7t(T) = P{T9" =T}
m So N1 (T2") ~ Bi(n, nt(T)).
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What is known cont.

Theorem Aldous (1991) (Law of large number)

Asn — oo,

Ny (I77) Pon(T).

n

Theorem Janson (2016) (Central limit theorm)

Asn — oo,
N1 (TR") — nm(T)

yvn

4 N(0,1),

where vy is a constant.
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What do we want to know

m What if the T in N1 (73") changes with n?
m The height of the largest complete r-ary fringe subtree.

m The largest k such that TR" contains all trees of size < k as
fringe subtree.

m What about non-fringe subtrees?
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Large fringe subtrees

m If [T,| — oo, then 7(T,,) = P{T9" =T,} — 0.

m Then we should have
Nt (T27V) = Bi(n, (Ty)) =~ Po(nmt(Ty)).
Theorem 1.2
Let kn, = o(n) and k., — oco. Then

lim sup dpv (N7(T2"),Po(nm(T))) =0.

N0 T T =y
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Large fringe subtrees cont.

Theorem 1.2 cont.

So letting (Tn)n>1 be a sequence of trees with |Tn| = kn, we have:

Ifnm(Ty) — 0, then Nt (TR") = 0 whp.
Ifnm(Tn) — w € (0,00), then Ny, (T3") S Po(w).
Ifnm(Ty) — oo, then

N1, (TR") — nn(Ty)
nm(Ty)

4 N(0,1).
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The degree sequence

m The degree of a node is the number of its children.

m The degree sequence of a tree, is the list of degrees of its
nodes in Depth-First-Search order.

m We can count fringe subtree through degree sequence.

1 T T

2 4 II
3 5 6 7 2

Degree sequence: (2,1,0,3,0,0,0) (1,0)
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Count fringe subtrees through the degree sequence

m Let (&,..., &) be the degree sequence of TR".
m Let (dy,..., dj1)) be the degree sequence of T.
m Then N1 (T2") can be write as

Nt(T9W) =Y 1

s
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I
_
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Why fringe subtrees are like unconditional
Galton-Watson trees

m Whennislarge, &',..., & areclose to &4,..., & (n
independent copies of &).

m Thus

P{ =1} =P{n, [y = ai]}
[T

~[[Pl& = dd =P{T9 =T} = (T).
i=1

m Soly,..., I, are close to iid Bernoulli 7t(T).

m This is why
NT(TR™) = Xj; Ij = Bi(n, 7(T)) = Po(nmn(T)).

18/47



The exchangeable pair method

m The proof of Theorem 1.2 uses the exchangeable pair
method (Ross (2011, thm. 4.37)).

m [t is a variation of Stein’s method for Poisson distribution.

m LetXy, ..., Xpand Yy,..., Y, beiid Be(p).
B LetW=X;+- -+ Xy.
m Let W =W — Xz + Yz where ZZ£ Unif({1,...,n}).

m We have an exchange pair — (W, W’) £ (W, W).

m Compute
PW =W —1|Xy,...,.Xn}, PW =W+1[Xy,..., Xy}

m Then the method says drv (W,Po(EW)) < p.
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Subtree replacing — the naive way

m Recall N7 (TR™) =31 L;.

m What if we do the same thing for N+ (T3")?
m Let N = Np(T") — Iz + 1, with I, £1,.

m Is (N, N1 (TR")) an exchangeable pair?

Replcace
_—
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Subtree replacing — the proper way

m Choose a fringe subtree of 73" uniformly at random.

m If its size is not the same as T, do nothing.
m Otherwise, replace it with T

m Let N be the number of T in the new tree.
m Then (N1(73"), N) is an exchangeable pair.

No change
_

T
Replcace
—
by 79"
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Upper bound of the total variation distance

Let Ty be the set of all trees of size k.
Let S - 1k.

Let Ng(T2") be the number of fringe subtrees that belongs
to 8.

Let (S) = P{T9™ ¢ §).
So NT(TR™) = N1y (TR™).

Lemma 4.1
Letk = kn = o(n) and k — oo. We have

drv (Ns(‘IgW),Po(mr(S))) 3 <k1/4>
< o — ).
Ssggk W(S)/T[(zk) aF H(S)/n(’lk) sl+o (k > + \/ﬁ
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Large fringe subtrees count—set version

Theorem 1.3

Let Ty be the set of trees of size k. Let kn, = o(n) and ky, — oo. Let
(Sn)nx1bea sequence with 8, C Ty, We have:

b [fnn(Sn) — 0, then Ng_(TR™) = 0 whp.
A [fnn(Sn) — p € (0,00), then Ngn(Tﬂw) = Po(p).
B [fnr(8n) — oo, then
NSn (‘ITQLW) - nﬂ(sn) d
nm(8y)

N(0,1).

A If (Sn)/m(Ty, ) = 0, then

lim drv (Ns, (T72"),Po(nm(8,))) = 0.

n—oo
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Application 1—largest complete r-ary fringe subtree

m Let T, “"Y be a complete r-ary tree of height h.

1 ary 2 ary 2 ary

A\
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Application 1—largest complete r-ary fringe subtree

Lemma 5.2 & 5.3

Let H,  be the height of the largest complete r-ary fringe subtree in
TAY. Then forr > 2,

Hy  —log, logn L

where &, is a constant. And

Hn,11og(1/P{& =1})

51
logn

Method:
m Find the maximum h such that n7t(T.*™) — oo.

m Then apply Theorem 1.2.
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Application 2—existence of all possible subtrees

m Let K,, be the maximum k such that 72" contains all trees
of size < k as fringe subtree.

gw
‘IlO

Kig =
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The coupon collector problem

Original version

There are n types of coupons. Each time we draw one type of
coupon uniformly at random. How many draws do we need to
collect all n types?

Generalized version

There are n types of coupons. Each time we draw a coupon, we
get type 1 with probability p;. How many draws do we need to
collect all n types?
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The coupon collector problem: the answer

Lemma 5.1 (Generalized coupon collector)
Assume X takes values in{1,...,n}. Let py = P{X =1i}. Let
X1,Xa, ... bei.id. copies of X. Let

N = 1nf{1 = 1: |{X1, X2, 00 .,Xi}| = Tl}.

Let m be a positive integers. We have

n

1
1-Y (1-p)™ <P{N<m}< .
; P S a—pom

If pi =1/n, then N = nlog(n) + op (1).
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Connection to our problem

m Draw independent copies 77" until every tree of size k has
appeared.

Let My be the number of draws.

Nz, (TR™) & nm(T).

So if nmt(Ty ) > My, then probably we have all trees of size
k as fringe subtree, otherwise we do not.

m This is a coupon collector problem!

30/47



The least possible tree

m Among all coupons, there is one that is least likely to

appear.
m If we get this one, we are likely to have all coupons.

m Let T be the least possible fringe subtree of size k.

m My depends on

pﬂﬁn =P {j-gw — T]r{nin} )

Lemma

m I[fnp™™ — 0, then T does not appear.
m If npMi™ /k — oo, then all possible subtrees of size k appear.
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What can we say about the least possible subtree?

min
B Py

m But there is a small surprise.

Theorem 5.2

We have

certainly depends on &.

(pmVE L

as k — oo, where 0 < L < 1 is a constant defined as
. L (PlE=i\"
L:iu;{{P{&—O}(P{E:O}> .
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Threshold of existence of all possible subtrees

m By theorem 5.2, if L > 0, then log(1/p*'™) ~ klog(1/L).
m K, = logl/L n + 0y (1) in this case.

Theorem 5.1
Assume that as k — oo,
log(1/pi™) ~ yk*(log k)®,

where > 1, 3 > 0,y > 0 are constants. Then

Kn », <fo5>l/(x
(logn/(loglogn)B)'/™ Y .
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Applications

GW Tree g log(1/p™i™) Kn

Full binary trees 2 x Be(1/2) klog?2 log,n
Motzkin trees Unif({0,1,2}) klog3 log,n
Binary trees Bi(2,1/2) klog4 log, n
d-ary trees Bi(d, 1/d) klogcgq log. . n
Plane trees Ge(1/2) klog4 log,n
Cayley trees Po(1) klogk 102’{% gn

B Cg4 is constant.
m Cayley tree is different because it has L = 0.
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Non-fringe subtrees

m Take a fringe subtree T,,.

m Replace some (or none) of T,’s own fringe subtrees with
leaves.

m The result is a called a non-fringe subtree at v.

T Non-fringe subtrees at v

\
1
|
|
|

ISt N
Not a non-fringe
subtree !
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Non-fringe subtree count

m Let N*M(T3") be the number of non-fringe subtrees of
shape Tin T3".

Tio- T

AN

NE (T30 ) =2
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Large Non-fringe subtree Count

m Let nf(T) be the prob. that T9" has T as a non-fringe
subtree at its root.

m We should have NI} (T3™) ~ Bi(n, nf(T)).

Theorem 1.4

Let Ty, be a sequence of trees with |Ty| = o(n). We have
Ifnm™(Tn) — 0, then NI (T™) = 0 whp.
Ifnm™(T,) — oo, then

NRITE)
nrf(Ty,)
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Proof by computing first and second moments

Lemma 6.9 & 6.10

Assume that |T,,| = o(n) and nn™(T,) — co. We have

E [NFF(T2")] = (1 + o(1))n™ (To).

Var (NBF(T8")) = o(nm"(To))%

So Theorem 1.4 follows by Chebyshev’s inequality.
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Difference between fringe and non-fringe subtrees

m Non-fringe subtrees can overlap.

m So it is more difficult to compute the second moment.

A

gw
(‘TlO

40/47



Glue two trees

Let {T @ T} be the trees that are two of T glued together.

?@0 QE;'“
I.l.
E:H%Q\]T ; P

T {TET}

T sash .
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The second factorial moment

Assuming that |T| = o(n), we have

E [N} (TZV)(NFI(TI™) —1)] =

(™ (M2 +2n > (T
T'e{TaeT}

m If the second term is o(n7t"f(T))? then we are done.
m Large T’ € {T & T} should not be a problem.
m And there cannot be many small T’ (with [T'| < 3/2|T]).
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Application 1—largest complete r-ary non-fringe
subtrees

Lemma 6.12 & 6.13

Let Hy,» be the height of the largest complete v-ary non-fringe subtree
in T, Then forr > 2,

Flnr —log. logn B —al.

And _
H,, 1log(1/P{ =1})

51
logn

Proof: Same as for fringe version.
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Application 2—maximum degree

m A node of degree d can be seen as a non-fringe subtree that
consists of the root and d-leaves.

m So Theorem 1.4 implies:

Theorem Meir and Moon (1991)

Assume that as k — oo,

1

o> 1
P{g =K}"/"
Let Yy, be the maximum degree in T3, then

Yn », 1 .
logn logp
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Open questions

m For fringe subtrees, does
drv (Nz, (T8V), Po(nm(Ty)) — 0,

as k — oco?
m For non-fringe subtrees

m A central limit theorem?
m What is the total number of non-fringe subtrees in T3"*?
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