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The definition



Inversions in a permutation

• Let 𝜎1, … , 𝜎𝑛 be a permutation of {1, … , 𝑛}.
• If 𝑖 < 𝑗 and 𝜎𝑖 > 𝜎𝑗, then the pair (𝜎𝑖, 𝜎𝑗) is called an

inversion.
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Inversions in a fixed tree

• Let 𝑇 be a tree with node
set 𝑉 .

• Let 𝜆 be node labeling
𝜆 ∶ 𝑉 → {1, … , |𝑉 |}.

• Define the number of
inversions

𝐼(𝑇 , 𝜆) def= ∑
𝑢<𝑣

1𝜆(𝑢)>𝜆(𝑣).

3

4

1 6

2

5

3



Inversions in a fixed tree

• Let 𝑇 be a tree with node
set 𝑉 .

• Let 𝜆 be node labeling
𝜆 ∶ 𝑉 → {1, … , |𝑉 |}.

• Define the number of
inversions

𝐼(𝑇 , 𝜆) def= ∑
𝑢<𝑣

1𝜆(𝑢)>𝜆(𝑣).

3

4

1 6

2

5

3



Inversions in a fixed tree

• Let 𝑇 be a tree with node
set 𝑉 .

• Let 𝜆 be node labeling
𝜆 ∶ 𝑉 → {1, … , |𝑉 |}.

• Define the number of
inversions

𝐼(𝑇 , 𝜆) def= ∑
𝑢<𝑣

1𝜆(𝑢)>𝜆(𝑣).

3

4

1 6

2

5

3



Inversions in a fixed tree

• Let 𝑇 be a tree with node
set 𝑉 .

• Let 𝜆 be node labeling
𝜆 ∶ 𝑉 → {1, … , |𝑉 |}.

• Define the number of
inversions

𝐼(𝑇 , 𝜆) def= ∑
𝑢<𝑣

1𝜆(𝑢)>𝜆(𝑣).

3

4

1 6

2

5

3



Inversions in fixed trees



Inversions in a randomly labeled tree

• Fix the tree 𝑇 .

• Choose a uniform random labeling 𝜆 of 𝑇 .
• We study the random variable 𝐼(𝑇 ) = 𝐼(𝑇 , 𝜆).
• Flajolet, Poblete, and Viola (1998) showed that this random

variable for Cayley trees converges to an Airy distribution.
• Panholzer and Seitz (2012) generalized this to conditional

Galton–Watson trees.
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Expectations

• Note that

𝔼 [𝐼(𝑇 )] = ∑
𝑢<𝑣

𝔼 [1𝜆(𝑢)>𝜆(𝑣)] = 1
2 ∑

𝑢<𝑣
1 def= 1

2Υ(𝑇 ).

• Υ(𝑇 ) is also known as the total path length, since

Υ(𝑇 ) def= ∑
𝑣

𝑑(𝑣),

where 𝑑(𝑣) is the depth of 𝑣.
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Inversions in a sequence of trees

• Let 𝑇𝑛 be a sequence of trees of size 𝑛.

• For 𝑇𝑛 = 𝑃𝑛 (a path of length 𝑛) [Feller (1968)]
𝐼(𝑃𝑛) − 𝔼 [𝐼(𝑃𝑛)]

𝑛
d⟶ 𝑁(0, 𝜎2).

• What if 𝑇𝑛 is a complete binary tree?
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Simulations

• We did simulation on the complete binary tree of height 26
• Does the result suggest a central limit theorem?
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The method of moments

• It is easy to see

𝔼 [𝐼(𝑇𝑛)] = Υ(𝑇𝑛) ∼ 1
2

𝑛 log2 𝑛
2 .

• The second moment

𝔼 [(𝐼(𝑇𝑛) − Υ(𝑇𝑛))2] ∼ 1
6𝑛2.

• The third moment

𝔼 [(𝐼(𝑇𝑛) − Υ(𝑇𝑛))3] = 𝑜 (𝑛3) .

• The fourth moment

𝔼 [(𝐼(𝑇𝑛) − Υ(𝑇𝑛))4] ∼ 31
405𝑛4.

• So it cannot be a normal distribution!
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A key observation

• Let 𝑍𝑜 be the number of inversions involving the root.
• Then 𝑍𝑜 and the numbers of inversions in the left subtree and

right subtree are independent.
• Proof by conditioning on the labels that go the left and the

right.

3

1, 4, 6 2, 5, 7

9



A key lemma

• Let 𝑧𝑣 be the size of the subtree at 𝑣.
• Let 𝑍𝑣 be the number of inversions involving 𝑣 and one of its

descendants.

Lemma 1

Let 𝑇 be a fixed tree. Then

𝐼(𝑇 ) d= ∑
𝑣∈𝑉

𝑍𝑣,

where {𝑍𝑣}𝑣∈𝑉 are independent random variables, and
𝑍𝑣 ∼ Unif{0, 1, … , 𝑧𝑣 − 1}.

10



Cumulants

• The cumulant-generating function of a r.v. 𝑋 is

𝐾𝑋(𝑡) = log 𝔼 [𝑒𝑡𝑋] .

• The cumulants 𝜘𝑘(𝑋) are defined by

𝐾𝑋(𝑡) = ∑
𝑘≥1

𝜘𝑘(𝑋)𝑡𝑘

𝑘! .

• If 𝑋 is independent of 𝑌 , then

𝜘𝑘(𝑋 + 𝑌 ) = 𝜘𝑘(𝑋) + 𝜘𝑘(𝑌 ).

• We can compute centralized-moments from cumulants.
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𝑘-total common ancestors

• For 𝑘 nodes 𝑣1, … , 𝑣𝑘, let 𝑐(𝑣1, … , 𝑣𝑘) be the number of
ancestors that they share.

• We define
Υ𝑘(𝑇 ) def= ∑

𝑣1,…,𝑣𝑘

𝑐(𝑣1, … , 𝑣𝑘).

• Note that Υ(𝑇 ) = Υ1(𝑇 ) − |𝑉 |.

𝑢 𝑣𝑢𝑣

𝑐(𝑢, 𝑣) = 1𝑐(𝑢, 𝑣) = 2

12
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Cumulants for 𝐼(𝑇 )

Theorem 2

We have

𝔼 [𝐼(𝑇 )] = 𝜘1(𝐼(𝑇 )) = 1
2(Υ1(𝑇 ) − |𝑉 |),

Var (𝐼(𝑇 )) = 𝜘2(𝐼(𝑇 )) = 1
12(Υ2(𝑇 ) − |𝑉 |).

More generally, for 𝑘 ≥ 1,

𝜘2𝑘+1(𝐼(𝑇 )) = 0, 𝜘2𝑘(𝐼(𝑇 )) = 𝐵2𝑘
2𝑘 (Υ2𝑘(𝑇 ) − |𝑉 |),

where 𝐵𝑘 denotes the 𝑘-th Bernoulli number.

13



The condition for convergence

Theorem 3

Let 𝑇𝑛 be a sequence of fixed trees on 𝑛 nodes. Let

𝑋𝑛 = 𝐼(𝑇𝑛) − 𝔼 [𝐼(𝑇𝑛)]
√Υ2(𝑇𝑛)

.

Assume that for all 𝑘 ≥ 1,

Υ2𝑘(𝑇𝑛)
Υ2(𝑇𝑛)𝑘 → 𝜁2𝑘,

for some sequence (𝜁2𝑘). Then there exists a unique 𝑋 with

𝜘2𝑘−1(𝑋) = 0, 𝜘2𝑘(𝑋) = 𝐵2𝑘
2𝑘 𝜁2𝑘, 𝑘 ≥ 1,

such that 𝑋𝑛
d⟶ 𝑋. 14



Back to the Path

• Let 𝑇𝑛 = 𝑃𝑛 (a path of length 𝑛),

Υ𝑘(𝑇𝑛) ∼ 1
𝑘 + 1𝑛𝑘+1.

• Thus
Υ2𝑘(𝑇𝑛)
Υ2(𝑇𝑛)𝑘 → 0 (𝑘 ≥ 2).

• So (𝐼(𝑇𝑛) − 𝔼 [𝐼(𝑇𝑛)])/𝑛 converges to 𝑋 with

𝜘𝑘(𝑋) = 0, (𝑘 ≥ 3).

• Then 𝑋 must be a normal distribution.

15



Back to complete binary trees

Theorem 4

Let 𝑏 ≥ 2 and let 𝑇𝑛 be the complete 𝑏-ary tree of height 𝑚 with
𝑛 nodes. Then

𝑋𝑛 = 𝐼(𝑇𝑛) − 𝔼 [𝐼(𝑇𝑛)]
𝑛

d⟶ ∑
𝑑≥0

𝑏𝑑

∑
𝑗=1

𝑈𝑑,𝑗
𝑏𝑑 ,

where (𝑈𝑑,𝑗)𝑑≥0,𝑗≥1 are independent Unif[−1/2, 1/2].

16



Inversions in split trees



Binary search trees (BST)

• BST is a computer data structure for storing “item” according
to the order of their “keys”.

• BST can be defined with a bijection to permutations.
• The average height of a BST of size 𝑛 is 𝛼 ln 𝑛 − 𝛽𝑙𝑛𝑙𝑛𝑛

[Reed, 2003].
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BST as a split tree i

• We can construct BST in another way.
• Consider an infinite binary tree.
• Each node is a “bucket” of size one.
• Each node is given a split vector 𝒱 = (𝑈, 1 − 𝑈) chosen

independently.
• 𝑛 balls come into the root one by one.
• When a bucket has more than one node, the extra goes to

child nodes chosen at random according to 𝒱.
• All empty buckets are removed in the end.

18



BST as a split tree ii

𝒱0 = (𝑈0, 1 − 𝑈0)

𝒱1 = (𝑈1, 1 − 𝑈1)

𝒱3 𝒱4

𝒱2 = (𝑈2, 1 − 𝑈2)

𝒱5 𝒱6

19
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Split trees

• By choosing different:
• inifnite trees
• bucket sizes
• distributions of split vector

• split trees encompasses:
• binary search trees
• b-ary search trees
• digital search trees
• tries, etc.

• Split trees are introduced by
Devroye (1999).
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Inversions in split trees

• We first choose the split tree 𝑇𝑛 with 𝑛 balls.
• Then we randomly label the balls.
• We define ̂𝐼(𝑇𝑛) as the number of inversions for balls.
• We study

�̂�𝑛 =
̂𝐼(𝑇𝑛) − 𝔼 [ ̂𝐼(𝑇𝑛)]

𝑛 .
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Results for split trees

Theorem 5

Let 𝑇𝑛 be a 𝑏-ary split tree with bucket size 𝑠0. Let
𝒱 = (𝑉1, … , 𝑉𝑏) be a split vector. Let �̂� be the unique solution
for the fixed-point equation

�̂� d=
𝑏

∑
𝑖=1

𝑉𝑖�̂�(𝑖) +
𝑠0

∑
𝑗=1

𝑈𝑗 + 𝑠0
2 𝐷(𝒱).

Then �̂�𝑛
d⟶ �̂�.

• Proof by the contraction method.
• A similar result holds for labeling nodes instead of balls.
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Inversions in conditional
Galton-Watson trees



Galton-Watson trees

• A Galton–Watson tree starts with a root node.
• Each node in the tree is given a random number of child

nodes.
• The numbers of children are independent with distribution 𝜉.
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Conditional Galton–Watson

• A conditional Galton–Watson tree 𝑇𝑛 is a Galton–Watson
tree conditioned on having 𝑛 nodes.

• It encompasses (uniform random)
• plane trees
• binary trees
• 𝑏-ary trees
• Cayley trees

• Very well studied, see, e.g., Janson (2012).
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The depth-first walk on a conditional Galton–Watson tree

ρ

v1 v2

v11 v12 v21

v121

1 8

2 3 4 7

5 6

9 12

10 11

Vn(t)

t

v11

v121

v1

v21

v2

It is well-known that the depth-first walk on conditional GW trees
converges to Brownian excursions [Aldous (1991a), Aldous
(1991b), Aldous (1993), and Le Gall (2005)].

25



Results for conditional GW trees i

Let 𝑒(𝑡) be a Brownian excursion. Let

𝜂 def= 4 ∫
0≤𝑠≤𝑡≤1

min
𝑠≤𝑢≤𝑡

𝑒(𝑢)d𝑠d𝑡.

Theorem 6

Assume that 𝔼 [𝜉] = 1, Var (𝜉) = 𝜎2 ∈ (0, ∞), and 𝔼 [𝑒𝛼𝜉] < ∞
for some 𝛼 > 0. Then

𝐼(𝑇𝑛) − 1
2Υ(𝑇𝑛)

𝑛5/4
d⟶ 1√

12𝜎
√𝜂 𝑁(0, 1).
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Results for conditional GW trees ii

• Let
𝑋𝑛 = 𝐼(𝑇𝑛) − 𝔼 [𝐼(𝑇𝑛)]

𝑛3/2 .

• Then we can decompose

𝑋𝑛 = 𝐼(𝑇𝑛) − 1
2Υ(𝑇𝑛)

𝑛3/2 + Υ(𝑇𝑛) − 𝔼 [Υ(𝑇𝑛)]
2𝑛3/2 .

• Our result shows that the first term goes to zero.
• Aldous (1991b) showed that Υ(𝑇𝑛)/𝑛−3/2 converges to an

Airy distribution.
• So 𝑋𝑛 also converges to an Airy distribution.
• We recover result from Panholzer and Seitz, 2012.
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Patterns on trees

• Let 𝜎 be a permutation of {1, … , 𝑘}. Let

𝑅𝜎(𝑇 , 𝜆) = ∑
𝑢1<⋯<𝑢𝑘

1[𝜆(𝑢1,…,𝑢𝑘)=𝜎].

• Then 𝑅21(𝑇 , 𝜆) = 𝐼(𝑇 , 𝜆).
• Recently Albert, Holmgren, Johansson, and Skerman, 2018

studied 𝑅𝜎(𝑇 , 𝜆) for complete binary trees and split trees.
• The spirit – most questions about permutations can be asked

for trees.
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Questions?
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