
The graph structure of a deterministic automaton
chosen at random

Xing Shi Cai Luc Devroye

School of Computer Science
McGill University

RS&A 2015



k-out digraph

A k-out digraph is a digraph
in which each vertex has k
labeled out-arcs.

Let Dn,k be a uniform
random k-out digraph of n
vertices.

Each arc chooses its
endpoint independently and
uniformly at random.

Assume k ≥ 2.
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Figure 1 : A 2-out digraph with 5
vertices.
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The largest SCC

In 1973 Grusho [4] proved that

Theorem 1

1 Whp there is a scc Gn in
Dn,k that is reachable from
all vertices.

2 And

|Gn| − νkn
σk
√
n

d→Z,

where Z is the standard
normal distribution.
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Theorem 1

1 Whp there is a scc Gn in
Dn,k that is reachable from
all vertices.

2 And

|Gn| − νkn
σk
√
n

d→Z,

where Z is the standard
normal distribution.

Figure 2 : Since νk > 1/2, Gn is the
largest scc. We call Gn the giant.



Recent research on Dn,k

In 2012, Carayol and Nicaud [3] reproved some of Grusho’s
results.

In 2015, Addario-Berry, Balle, and Perarnau [1] proved that
the diameter and the typical distance of Dn,k , rescaled by
log n, converge in probability to constants.

Also in 2014, Angluin and Chen [2] studied the mixing time of
simple random walk on Dn,k .



Recent research on Dn,k

In 2012, Carayol and Nicaud [3] reproved some of Grusho’s
results.

In 2015, Addario-Berry, Balle, and Perarnau [1] proved that
the diameter and the typical distance of Dn,k , rescaled by
log n, converge in probability to constants.

Also in 2014, Angluin and Chen [2] studied the mixing time of
simple random walk on Dn,k .



Recent research on Dn,k

In 2012, Carayol and Nicaud [3] reproved some of Grusho’s
results.

In 2015, Addario-Berry, Balle, and Perarnau [1] proved that
the diameter and the typical distance of Dn,k , rescaled by
log n, converge in probability to constants.

Also in 2014, Angluin and Chen [2] studied the mixing time of
simple random walk on Dn,k .



Our Result 1 — Cycles outside the giant

Let Gcn ≡ [n] \ Gn. Let Dn,k [Gcn ] be the sub-digraph induced by Gcn .

Theorem 2

1 Let Ln be the length of the longest cycle in Dn,k [Gcn ]. Then
Ln = Op(1).

2 Let Cn be the number of cycles in Dn,k [Gcn ]. Then

Cn
d→ Poi

(
log

1

1− kµk

)
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The intuition of Theorem 2

When two cycles share
vertices, they contain fewer
vertices than arcs.

The expected number of this
type of sub-digraphs goes to
zero.

Let C be the set of all
possible cycles. Then
Cn ≡

∑
α∈C 1[α].

The dependence between
these indicators is very
small.

Figure 3 : Two cycles sharing one
vertex.
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The three layers of Dn,k

Dn,k can be divided into
three layers:

Center — Gn

Middle — On \ Gn
Outer — Oc

n

On induces the maximum
sub-digraph in which
in-degree ≥ 1.

We call On the one-in-core.
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Our result 2 — A new proof of Theorem 1

By Theorem 2, whp |On| − |Gn|
is small.

In fact |On| − |Gn| = Op(1).

Thus Theorem 3 implies the
central limit law of |Gn|.
On = V iff.

(a) Dn,k [V] is a k-surjection.
(b) Dn,k [Vc ] is acyclic.

P {On = V} = P {(a)}P {(b)}.

Theorem 3

As n→∞,

|On| − νkn
σk
√
n

d→Z.
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Spectra outside the giant

Sv (the spectrum of v) is the
set of vertices the are reachable
from v .

Let S ′v ≡ Sv ∩ Gcn .

Grusho showed that

|S1| − νkn
σk
√
n

d→Z.

And |S ′1| = Op(1).

Figure 5 : The spectrum of a
vertex.
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Our result 3 — Spectra outside the giant

Theorem 4

1 Whp every S ′v induces either a tree or
. . .

2 Let Sn ≡ maxv∈Gcn |S
′
v |. Then

Sn
log n

p→ 1

log(1/λk)
.

3 Let Wn ≡ maxv∈Gcn dist(v ,Gn). Then

Wn

logk log n

p→ 1.

Figure 6 : The tree-like
structure of spectra.
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Our result 3 — Spectra outside the giant (continued)

Theorem 4

4 Let
Dn ≡ maxv∈Gcn maxu∈S′v dist(v , u).
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.
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.

Figure 7 : The tree-like
structure of spectra.
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Proof technique — Try until success

To find a S ′v = Ω(log n):

Explore the spectrum of one
vertex.

If it is large enough, we
succeed.

Otherwise, we try again.

And again.

Until we find a large one.

The probability to succeed
in one trial is small.

The probability to eventually
succeed goes to one.

Figure 8 : Try until success.
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Our result 4 – Strong connectivity

1 Recall that |Gn| ≈ νkn.

2 As νk ≥ 1− e−k+O(1), νk → 1 as k →∞.

3 When does the whole digraph get strongly connected?

Theorem 5 (Phase transition in strong connectivity)

1 If k − log n→ −∞, then whp Dn,k is not strongly connected.

2 If k − log n→∞, then whp Dn,k is strongly connected.
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Some open questions

1 Vertex connectivity of Gn.

2 Extends central limit laws to simple digraphs.

3 Generalize the model to non-regular out-degree sequence.

4 Generating a uniform random surjection from {1, . . . ,m} to
{1, . . . , n} for arbitrary m = m(n).
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