The graph structure of a deterministic automaton chosen at random

Xing Shi Cai Luc Devroye
School of Computer Science McGill University

RS\&A 2015

k-out digraph

- A k-out digraph is a digraph in which each vertex has k labeled out-arcs.

Figure 1: A 2-out digraph with 5 vertices.

k-out digraph

- A k-out digraph is a digraph in which each vertex has k labeled out-arcs.
- Let $\mathcal{D}_{n, k}$ be a uniform random k-out digraph of n vertices.

Figure 1: A 2-out digraph with 5 vertices.

k-out digraph

- A k-out digraph is a digraph in which each vertex has k labeled out-arcs.
■ Let $\mathcal{D}_{n, k}$ be a uniform random k-out digraph of n vertices.
■ Each arc chooses its endpoint independently and uniformly at random.

Figure 1: A 2-out digraph with 5 vertices.

k-out digraph

- A k-out digraph is a digraph in which each vertex has k labeled out-arcs.
■ Let $\mathcal{D}_{n, k}$ be a uniform random k-out digraph of n vertices.
- Each arc chooses its endpoint independently and uniformly at random.
- Assume $k \geq 2$.

Figure 1: A 2-out digraph with 5 vertices.

The largest SCC

In 1973 Grusho [4] proved that

The largest SCC

In 1973 Grusho [4] proved that

Theorem 1

1 Whp there is a SCC \mathcal{G}_{n} in
$\mathcal{D}_{n, k}$ that is reachable from all vertices.

The largest SCC

In 1973 Grusho [4] proved that

Theorem 1

1 Whp there is a SCC \mathcal{G}_{n} in
$\mathcal{D}_{n, k}$ that is reachable from all vertices.

2 And

$$
\frac{\left|\mathcal{G}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z}
$$

where \mathcal{Z} is the standard normal distribution.

The largest SCC

In 1973 Grusho [4] proved that

Theorem 1

1 Whp there is a $\operatorname{SCC} \mathcal{G}_{n}$ in $\mathcal{D}_{n, k}$ that is reachable from all vertices.

2 And

$$
\frac{\left|\mathcal{G}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z}
$$

where \mathcal{Z} is the standard normal distribution.

Figure 2: Since $\nu_{k}>1 / 2, \mathcal{G}_{n}$ is the largest SCC. We call \mathcal{G}_{n} the giant.

Recent research on $\mathcal{D}_{n, k}$

- In 2012, Carayol and Nicaud [3] reproved some of Grusho's results.

Recent research on $\mathcal{D}_{n, k}$

■ In 2012, Carayol and Nicaud [3] reproved some of Grusho's results.

- In 2015, Addario-Berry, Balle, and Perarnau [1] proved that the diameter and the typical distance of $\mathcal{D}_{n, k}$, rescaled by $\log n$, converge in probability to constants.

Recent research on $\mathcal{D}_{n, k}$

■ In 2012, Carayol and Nicaud [3] reproved some of Grusho's results.
■ In 2015, Addario-Berry, Balle, and Perarnau [1] proved that the diameter and the typical distance of $\mathcal{D}_{n, k}$, rescaled by $\log n$, converge in probability to constants.

- Also in 2014, Angluin and Chen [2] studied the mixing time of simple random walk on $\mathcal{D}_{n, k}$.

Our Result 1 - Cycles outside the giant

$$
\text { Let } \mathcal{G}_{n}^{c} \equiv[n] \backslash \mathcal{G}_{n} \text {. Let } \mathcal{D}_{n, k}\left[\mathcal{G}_{n}^{c}\right] \text { be the sub-digraph induced by } \mathcal{G}_{n}^{c} \text {. }
$$

Our Result 1 - Cycles outside the giant

Let $\mathcal{G}_{n}^{c} \equiv[n] \backslash \mathcal{G}_{n}$. Let $\mathcal{D}_{n, k}\left[\mathcal{G}_{n}^{c}\right]$ be the sub-digraph induced by \mathcal{G}_{n}^{c}.

Theorem 2

1 Let L_{n} be the length of the longest cycle in $\mathcal{D}_{n, k}\left[\mathcal{G}_{n}^{c}\right]$. Then $L_{n}=O_{p}(1)$.

Our Result 1 - Cycles outside the giant

Let $\mathcal{G}_{n}^{c} \equiv[n] \backslash \mathcal{G}_{n}$. Let $\mathcal{D}_{n, k}\left[\mathcal{G}_{n}^{c}\right]$ be the sub-digraph induced by \mathcal{G}_{n}^{c}.

Theorem 2

1 Let L_{n} be the length of the longest cycle in $\mathcal{D}_{n, k}\left[\mathcal{G}_{n}^{c}\right]$. Then $L_{n}=O_{p}(1)$.
2 Let C_{n} be the number of cycles in $\mathcal{D}_{n, k}\left[\mathcal{G}_{n}^{c}\right]$. Then

$$
C_{n} \xrightarrow{d} \operatorname{Poi}\left(\log \frac{1}{1-k \mu_{k}}\right) .
$$

The intuition of Theorem 2

- When two cycles share vertices, they contain fewer vertices than arcs.

Figure 3: Two cycles sharing one vertex.

The intuition of Theorem 2

- When two cycles share vertices, they contain fewer vertices than arcs.
- The expected number of this type of sub-digraphs goes to zero.

Figure 3: Two cycles sharing one vertex.

The intuition of Theorem 2

- When two cycles share vertices, they contain fewer vertices than arcs.
- The expected number of this type of sub-digraphs goes to zero.
- Let \mathcal{C} be the set of all possible cycles. Then
$C_{n} \equiv \sum_{\alpha \in \mathcal{C}} \mathbb{1}_{[\alpha]}$.

Figure 3: Two cycles sharing one vertex.

The intuition of Theorem 2

■ When two cycles share vertices, they contain fewer vertices than arcs.

- The expected number of this type of sub-digraphs goes to zero.
- Let \mathcal{C} be the set of all possible cycles. Then
$C_{n} \equiv \sum_{\alpha \in \mathcal{C}} \mathbb{1}_{[\alpha]}$.
■ The dependence between these indicators is very small.

The three layers of $\mathcal{D}_{n, k}$

- $\mathcal{D}_{n, k}$ can be divided into three layers:
- Center - \mathcal{G}_{n}

Figure 4: Three layers of $\mathcal{D}_{n, k}$

The three layers of $\mathcal{D}_{n, k}$

- $\mathcal{D}_{n, k}$ can be divided into three layers:
- Center - \mathcal{G}_{n}
- Middle - $\mathcal{O}_{n} \backslash \mathcal{G}_{n}$

Figure 4: Three layers of $\mathcal{D}_{n, k}$

The three layers of $\mathcal{D}_{n, k}$

- $\mathcal{D}_{n, k}$ can be divided into three layers:
- Center - \mathcal{G}_{n}
- Middle $-\mathcal{O}_{n} \backslash \mathcal{G}_{n}$
- Outer - \mathcal{O}_{n}^{c}

Figure 4: Three layers of $\mathcal{D}_{n, k}$

The three layers of $\mathcal{D}_{n, k}$

- $\mathcal{D}_{n, k}$ can be divided into three layers:
- Center - \mathcal{G}_{n}
- Middle $-\mathcal{O}_{n} \backslash \mathcal{G}_{n}$
- Outer - \mathcal{O}_{n}^{c}
- \mathcal{O}_{n} induces the maximum sub-digraph in which in-degree ≥ 1.

Figure 4: Three layers of $\mathcal{D}_{n, k}$

The three layers of $\mathcal{D}_{n, k}$

- $\mathcal{D}_{n, k}$ can be divided into three layers:
- Center - \mathcal{G}_{n}
- Middle $-\mathcal{O}_{n} \backslash \mathcal{G}_{n}$
- Outer - \mathcal{O}_{n}^{c}
- \mathcal{O}_{n} induces the maximum sub-digraph in which in-degree ≥ 1.
■ We call \mathcal{O}_{n} the one-in-core.

Figure 4 : Three layers of $\mathcal{D}_{n, k}$

Our result 2 - A new proof of Theorem 1

- By Theorem 2, whp $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|$ is small.

Theorem 3

As $n \rightarrow \infty$,

$$
\frac{\left|\mathcal{O}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

Our result 2 - A new proof of Theorem 1

- By Theorem 2, whp $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|$ is small.

■ In fact $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|=O_{p}(1)$.

Theorem 3
As $n \rightarrow \infty$,

$$
\frac{\left|\mathcal{O}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

Our result 2 - A new proof of Theorem 1

- By Theorem 2, whp $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|$ is small.

■ In fact $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|=O_{p}(1)$.
■ Thus Theorem 3 implies the central limit law of $\left|\mathcal{G}_{n}\right|$.

Theorem 3
As $n \rightarrow \infty$,

$$
\frac{\left|\mathcal{O}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

Our result 2 - A new proof of Theorem 1

- By Theorem 2, whp $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|$ is small.

■ In fact $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|=O_{p}(1)$.

- Thus Theorem 3 implies the central limit law of $\left|\mathcal{G}_{n}\right|$.
- $\mathcal{O}_{n}=\mathcal{V}$ iff.

Theorem 3
As $n \rightarrow \infty$,

$$
\frac{\left|\mathcal{O}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

Our result 2 - A new proof of Theorem 1

- By Theorem 2, whp $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|$ is small.

■ In fact $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|=O_{p}(1)$.
■ Thus Theorem 3 implies the central limit law of $\left|\mathcal{G}_{n}\right|$.

- $\mathcal{O}_{n}=\mathcal{V}$ iff.
(a) $\mathcal{D}_{n, k}[\mathcal{V}]$ is a k-surjection.

Theorem 3

As $n \rightarrow \infty$,

$$
\frac{\left|\mathcal{O}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z}
$$

Our result 2 - A new proof of Theorem 1

- By Theorem 2, whp $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|$ is small.

■ In fact $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|=O_{p}(1)$.
■ Thus Theorem 3 implies the central limit law of $\left|\mathcal{G}_{n}\right|$.

- $\mathcal{O}_{n}=\mathcal{V}$ iff.
(a) $\mathcal{D}_{n, k}[\mathcal{V}]$ is a k-surjection.
(b) $\mathcal{D}_{n, k}\left[\mathcal{V}^{c}\right]$ is acyclic.

Theorem 3
As $n \rightarrow \infty$,

$$
\frac{\left|\mathcal{O}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

Our result 2 - A new proof of Theorem 1

- By Theorem 2, whp $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|$ is small.

■ In fact $\left|\mathcal{O}_{n}\right|-\left|\mathcal{G}_{n}\right|=O_{p}(1)$.
■ Thus Theorem 3 implies the central limit law of $\left|\mathcal{G}_{n}\right|$.

- $\mathcal{O}_{n}=\mathcal{V}$ iff.
(a) $\mathcal{D}_{n, k}[\mathcal{V}]$ is a k-surjection.
(b) $\mathcal{D}_{n, k}\left[\mathcal{V}^{c}\right]$ is acyclic.

■ $\mathbb{P}\left\{\mathcal{O}_{n}=\mathcal{V}\right\}=\mathbb{P}\{(a)\} \mathbb{P}\{(b)\}$.

Theorem 3

As $n \rightarrow \infty$,

$$
\frac{\left|\mathcal{O}_{n}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

Spectra outside the giant

- \mathcal{S}_{v} (the spectrum of v) is the set of vertices the are reachable from v.

Figure 5 : The spectrum of a vertex.

Spectra outside the giant

- \mathcal{S}_{v} (the spectrum of v) is the set of vertices the are reachable from v.
■ Let $\mathcal{S}_{v}^{\prime} \equiv \mathcal{S}_{v} \cap \mathcal{G}_{n}^{c}$.

Figure 5: The spectrum of a vertex.

Spectra outside the giant

- \mathcal{S}_{v} (the spectrum of v) is the set of vertices the are reachable from v.
- Let $\mathcal{S}_{v}^{\prime} \equiv \mathcal{S}_{v} \cap \mathcal{G}_{n}^{c}$.
- Grusho showed that

$$
\frac{\left|\mathcal{S}_{1}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

Figure 5: The spectrum of a vertex.

Spectra outside the giant

- \mathcal{S}_{v} (the spectrum of v) is the set of vertices the are reachable from v.
- Let $\mathcal{S}_{v}^{\prime} \equiv \mathcal{S}_{v} \cap \mathcal{G}_{n}^{c}$.
- Grusho showed that

$$
\frac{\left|\mathcal{S}_{1}\right|-\nu_{k} n}{\sigma_{k} \sqrt{n}} \xrightarrow{d} \mathcal{Z} .
$$

- And $\left|\mathcal{S}_{1}^{\prime}\right|=O_{p}(1)$.

Figure 5: The spectrum of a vertex.

Our result 3 - Spectra outside the giant

Theorem 4

1 Whp every S_{v}^{\prime} induces either a tree or ...

Figure 6: The tree-like structure of spectra.

Our result 3 - Spectra outside the giant

Theorem 4

1 Whp every S_{v}^{\prime} induces either a tree or a tree plus an extra arc.

Figure 6: The tree-like structure of spectra.

Our result 3 - Spectra outside the giant

Theorem 4

1 Whp every S_{v}^{\prime} induces either a tree or a tree plus an extra arc.
2 Let $S_{n} \equiv \max _{v \in \mathcal{G}_{n}^{c}}\left|\mathcal{S}_{v}^{\prime}\right|$. Then

$$
\frac{S_{n}}{\log n} \xrightarrow{p} \frac{1}{\log \left(1 / \lambda_{k}\right)} .
$$

Figure 6: The tree-like structure of spectra.

Our result 3 - Spectra outside the giant

Theorem 4

1 Whp every S_{v}^{\prime} induces either a tree or a tree plus an extra arc.
2 Let $S_{n} \equiv \max _{v \in \mathcal{G}_{n}^{c}}\left|\mathcal{S}_{v}^{\prime}\right|$. Then

$$
\frac{S_{n}}{\log n} \xrightarrow{p} \frac{1}{\log \left(1 / \lambda_{k}\right)} .
$$

3 Let $W_{n} \equiv \max _{v \in \mathcal{G}_{n}^{c}} \operatorname{dist}\left(v, \mathcal{G}_{n}\right)$. Then

$$
\frac{W_{n}}{\log _{k} \log n} \xrightarrow{p} 1 .
$$

Figure 6: The tree-like structure of spectra.

Our result 3 - Spectra outside the giant (continued)

Theorem 4

4 Let
$D_{n} \equiv \max _{v \in \mathcal{G}_{n}^{c}} \max _{u \in \mathcal{S}_{v}^{\prime}} \operatorname{dist}(v, u)$.
Then

$$
\frac{D_{n}}{\log n} \xrightarrow{p} \frac{1}{\log \left(1 / k \mu_{k}\right)} .
$$

Figure 7: The tree-like structure of spectra.

Our result 3 - Spectra outside the giant (continued)

Theorem 4

4 Let
$D_{n} \equiv \max _{v \in \mathcal{G}_{n}^{c}} \max _{u \in \mathcal{S}_{v}^{\prime}} \operatorname{dist}(v, u)$.
Then

$$
\frac{D_{n}}{\log n} \xrightarrow{p} \frac{1}{\log \left(1 / k \mu_{k}\right)} .
$$

5 Let M_{n} be the length of the longest path in $\mathcal{D}_{n, k}\left[\mathcal{G}_{n}^{c}\right]$. Then

$$
\frac{M_{n}}{\log n} \xrightarrow{p} \frac{1}{\log \left(1 / k \mu_{k}\right)} .
$$

Figure 7: The tree-like structure of spectra.

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

- Explore the spectrum of one vertex.

Figure 8 : Try until success.

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

- Explore the spectrum of one vertex.

- If it is large enough, we succeed.

Figure 8 : Try until success.

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

- Explore the spectrum of one vertex.

- If it is large enough, we succeed.
- Otherwise, we try again.

Figure 8 : Try until success.

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.

Figure 8 : Try until success.

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.

■ Until we find a large one.

Figure 8 : Try until success.

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.
- Until we find a large one.
- The probability to succeed in one trial is small.

Figure 8 : Try until success.

Proof technique - Try until success

To find a $\mathcal{S}_{v}^{\prime}=\Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.

■ Until we find a large one.

- The probability to succeed in one trial is small.
- The probability to eventually succeed goes to one.

Figure 8 : Try until success.

Our result 4 - Strong connectivity

1 Recall that $\left|\mathcal{G}_{n}\right| \approx \nu_{k} n$.

Our result 4 - Strong connectivity

1 Recall that $\left|\mathcal{G}_{n}\right| \approx \nu_{k} n$.
2 As $\nu_{k} \geq 1-e^{-k+O(1)}, \nu_{k} \rightarrow 1$ as $k \rightarrow \infty$.

Our result 4 - Strong connectivity

1 Recall that $\left|\mathcal{G}_{n}\right| \approx \nu_{k} n$.
2 As $\nu_{k} \geq 1-e^{-k+O(1)}, \nu_{k} \rightarrow 1$ as $k \rightarrow \infty$.
3 When does the whole digraph get strongly connected?

Our result 4 - Strong connectivity

1 Recall that $\left|\mathcal{G}_{n}\right| \approx \nu_{k} n$.
2 As $\nu_{k} \geq 1-e^{-k+O(1)}, \nu_{k} \rightarrow 1$ as $k \rightarrow \infty$.
3 When does the whole digraph get strongly connected?

Our result 4 - Strong connectivity

1 Recall that $\left|\mathcal{G}_{n}\right| \approx \nu_{k} n$.
2 As $\nu_{k} \geq 1-e^{-k+O(1)}, \nu_{k} \rightarrow 1$ as $k \rightarrow \infty$.
3 When does the whole digraph get strongly connected?

Theorem 5 (Phase transition in strong connectivity)

1 If $k-\log n \rightarrow-\infty$, then $w h p \mathcal{D}_{n, k}$ is not strongly connected.
2 If $k-\log n \rightarrow \infty$, then whp $\mathcal{D}_{n, k}$ is strongly connected.

Some open questions

1 Vertex connectivity of \mathcal{G}_{n}.

Some open questions

1 Vertex connectivity of \mathcal{G}_{n}.
2 Extends central limit laws to simple digraphs.

Some open questions

1 Vertex connectivity of \mathcal{G}_{n}.
2 Extends central limit laws to simple digraphs.
3 Generalize the model to non-regular out-degree sequence.

Some open questions

1 Vertex connectivity of \mathcal{G}_{n}.
2 Extends central limit laws to simple digraphs.
3 Generalize the model to non-regular out-degree sequence.
4 Generating a uniform random surjection from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$ for arbitrary $m=m(n)$.

Acknowledgment and Questions

1 The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,

Acknowledgment and Questions

1 The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,
2 and Denis Thérien for pointing out the importance of the model,

Acknowledgment and Questions

1 The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,
2 and Denis Thérien for pointing out the importance of the model,
3 and Ross Kang for suggesting me to give this talk.

Acknowledgment and Questions

1 The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,
2 and Denis Thérien for pointing out the importance of the model,
3 and Ross Kang for suggesting me to give this talk.
4 Thanks for listening!

References

[1] L. Addario-Berry, B. Balle, and G. Perarnau. Diameter and Stationary Distribution of Random r-out Digraphs. ArXiv e-prints, 2015.
[2] D. Angluin and D. Chen. Random walks on random uni-regular graphs. 2015.
[3] A. Carayol and C. Nicaud. Distribution of the number of accessible states in a random deterministic automaton. In 29th International Symposium on Theoretical Aspects of Computer Science, volume 14 of Leibniz International Proceedings in Informatics, 194-205. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.
[4] A. A. Grusho. Limit distributions of certain characteristics of random automaton graphs. Mathematical Notes of the Academy of Sciences of the USSR, 14(1):633-637, 1973.

