The graph structure of a deterministic automaton chosen at random

Xing Shi Cai Luc Devroye

School of Computer Science McGill University

RS&A 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 A k-out digraph is a digraph in which each vertex has k labeled out-arcs.

Figure 1 : A 2-out digraph with 5 vertices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A k-out digraph is a digraph in which each vertex has k labeled out-arcs.
- Let D_{n,k} be a uniform random k-out digraph of n vertices.

Figure 1 : A 2-out digraph with 5 vertices.

- A k-out digraph is a digraph in which each vertex has k labeled out-arcs.
- Let D_{n,k} be a uniform random k-out digraph of n vertices.
- Each arc chooses its endpoint independently and uniformly at random.

Figure 1 : A 2-out digraph with 5 vertices.

- A k-out digraph is a digraph in which each vertex has k labeled out-arcs.
- Let D_{n,k} be a uniform random k-out digraph of n vertices.
- Each arc chooses its endpoint independently and uniformly at random.
- Assume $k \geq 2$.

Figure 1 : A 2-out digraph with 5 vertices.

In 1973 Grusho [4] proved that

The largest SCC

In 1973 Grusho [4] proved that

Theorem 1

1 Whp there is a SCC G_n in $\mathcal{D}_{n,k}$ that is reachable from all vertices.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The largest SCC

In 1973 Grusho [4] proved that

Theorem 1

1 Whp there is a SCC G_n in $\mathcal{D}_{n,k}$ that is reachable from all vertices.

2 And

$$\frac{|\mathcal{G}_n|-\nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z},$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

where \mathcal{Z} is the standard normal distribution.

In 1973 Grusho [4] proved that

Theorem 1

1 Whp there is a SCC G_n in $\mathcal{D}_{n,k}$ that is reachable from all vertices.

2 And

$$\frac{|\mathcal{G}_n|-\nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z},$$

where \mathcal{Z} is the standard normal distribution.

Figure 2 : Since $\nu_k > 1/2$, \mathcal{G}_n is the largest SCC. We call \mathcal{G}_n the giant.

Recent research on $\mathcal{D}_{n,k}$

In 2012, Carayol and Nicaud [3] reproved some of Grusho's results.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recent research on $\mathcal{D}_{n,k}$

- In 2012, Carayol and Nicaud [3] reproved some of Grusho's results.
- In 2015, Addario-Berry, Balle, and Perarnau [1] proved that the diameter and the typical distance of $\mathcal{D}_{n,k}$, rescaled by log *n*, converge in probability to constants.

Recent research on $\mathcal{D}_{n,k}$

- In 2012, Carayol and Nicaud [3] reproved some of Grusho's results.
- In 2015, Addario-Berry, Balle, and Perarnau [1] proved that the diameter and the typical distance of $\mathcal{D}_{n,k}$, rescaled by log *n*, converge in probability to constants.
- Also in 2014, Angluin and Chen [2] studied the mixing time of simple random walk on $\mathcal{D}_{n,k}$.

Our Result 1 — Cycles outside the giant

Let $\mathcal{G}_n^c \equiv [n] \setminus \mathcal{G}_n$. Let $\mathcal{D}_{n,k}[\mathcal{G}_n^c]$ be the sub-digraph induced by \mathcal{G}_n^c .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Our Result 1 — Cycles outside the giant

Let $\mathcal{G}_n^c \equiv [n] \setminus \mathcal{G}_n$. Let $\mathcal{D}_{n,k}[\mathcal{G}_n^c]$ be the sub-digraph induced by \mathcal{G}_n^c .

Theorem 2

1 Let L_n be the length of the longest cycle in $\mathcal{D}_{n,k}[\mathcal{G}_n^c]$. Then $L_n = O_p(1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our Result 1 — Cycles outside the giant

Let $\mathcal{G}_n^c \equiv [n] \setminus \mathcal{G}_n$. Let $\mathcal{D}_{n,k}[\mathcal{G}_n^c]$ be the sub-digraph induced by \mathcal{G}_n^c .

Theorem 2

- **1** Let L_n be the length of the longest cycle in $\mathcal{D}_{n,k}[\mathcal{G}_n^c]$. Then $L_n = O_p(1)$.
- **2** Let C_n be the number of cycles in $\mathcal{D}_{n,k}[\mathcal{G}_n^c]$. Then

$$C_n \stackrel{d}{\to} \operatorname{Poi}\left(\log \frac{1}{1-k\mu_k}\right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 When two cycles share vertices, they contain fewer vertices than arcs.

Figure 3 : Two cycles sharing one vertex.

- When two cycles share vertices, they contain fewer vertices than arcs.
- The expected number of this type of sub-digraphs goes to zero.

Figure 3 : Two cycles sharing one vertex.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- When two cycles share vertices, they contain fewer vertices than arcs.
- The expected number of this type of sub-digraphs goes to zero.
- Let C be the set of all possible cycles. Then $C_n \equiv \sum_{\alpha \in C} \mathbb{1}_{[\alpha]}.$

Figure 3 : Two cycles sharing one vertex.

- When two cycles share vertices, they contain fewer vertices than arcs.
- The expected number of this type of sub-digraphs goes to zero.
- Let C be the set of all possible cycles. Then $C_n \equiv \sum_{\alpha \in C} \mathbb{1}_{[\alpha]}.$
- The dependence between these indicators is very small.

Figure 3 : Two cycles sharing one vertex.

- *D_{n,k}* can be divided into three layers:
 - Center G_n

Figure 4 : Three layers of $\mathcal{D}_{n,k}$

- *D_{n,k}* can be divided into three layers:
 - Center \mathcal{G}_n
 - Middle $\mathcal{O}_n \setminus \mathcal{G}_n$

Figure 4 : Three layers of $\mathcal{D}_{n,k}$

- *D_{n,k}* can be divided into three layers:
 - Center \mathcal{G}_n
 - Middle $\mathcal{O}_n \setminus \mathcal{G}_n$
 - Outer \mathcal{O}_n^c

Figure 4 : Three layers of $\mathcal{D}_{n,k}$

- *D_{n,k}* can be divided into three layers:
 - Center G_n
 - Middle $\mathcal{O}_n \setminus \mathcal{G}_n$
 - Outer \mathcal{O}_n^c
- \mathcal{O}_n induces the maximum sub-digraph in which in-degree ≥ 1 .

Figure 4 : Three layers of $\mathcal{D}_{n,k}$

- *D_{n,k}* can be divided into three layers:
 - Center G_n
 - Middle $\mathcal{O}_n \setminus \mathcal{G}_n$
 - Outer \mathcal{O}_n^c
- \mathcal{O}_n induces the maximum sub-digraph in which in-degree ≥ 1 .
- We call \mathcal{O}_n the one-in-core.

Figure 4 : Three layers of $\mathcal{D}_{n,k}$

By Theorem 2, whp $|\mathcal{O}_n| - |\mathcal{G}_n|$ is small.

Theorem 3 As $n \to \infty$.

 $\frac{|\mathcal{O}_n|-\nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

By Theorem 2, whp $|\mathcal{O}_n| - |\mathcal{G}_n|$ is small.

• In fact
$$|\mathcal{O}_n| - |\mathcal{G}_n| = O_p(1)$$
.

Theorem 3 As $n \to \infty$, $\frac{|\mathcal{O}_n| - \nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- By Theorem 2, whp $|\mathcal{O}_n| |\mathcal{G}_n|$ is small.
- In fact $|\mathcal{O}_n| |\mathcal{G}_n| = O_p(1)$.
- Thus Theorem 3 implies the central limit law of |G_n|.

Theorem 3
As $n \to \infty$,
$\frac{ \mathcal{O}_n -\nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$

- By Theorem 2, whp $|\mathcal{O}_n| |\mathcal{G}_n|$ is small.
- In fact $|\mathcal{O}_n| |\mathcal{G}_n| = O_p(1)$.
- Thus Theorem 3 implies the central limit law of |G_n|.

•
$$\mathcal{O}_n = \mathcal{V}$$
 iff.

Theorem 3 As $n \to \infty$, $\frac{|\mathcal{O}_n| - \nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$

- By Theorem 2, whp $|\mathcal{O}_n| |\mathcal{G}_n|$ is small.
- In fact $|\mathcal{O}_n| |\mathcal{G}_n| = O_p(1)$.
- Thus Theorem 3 implies the central limit law of |G_n|.

•
$$\mathcal{O}_n = \mathcal{V}$$
 iff.
(a) $\mathcal{D}_{n,k}[\mathcal{V}]$ is a *k*-surjection.

Theorem 3 As $n \to \infty$, $\frac{|\mathcal{O}_n| - \nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$

- By Theorem 2, whp $|\mathcal{O}_n| |\mathcal{G}_n|$ is small.
- In fact $|\mathcal{O}_n| |\mathcal{G}_n| = O_p(1)$.
- Thus Theorem 3 implies the central limit law of |G_n|.

•
$$\mathcal{O}_n = \mathcal{V}$$
 iff.

(a) D_{n,k}[V] is a k-surjection.
(b) D_{n,k}[V^c] is acyclic.

Theorem 3 As $n \to \infty$, $\frac{|\mathcal{O}_n| - \nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$

By Theorem 2, whp $|\mathcal{O}_n| - |\mathcal{G}_n|$ is small.

• In fact
$$|\mathcal{O}_n| - |\mathcal{G}_n| = O_p(1)$$
.

Thus Theorem 3 implies the central limit law of |G_n|.

•
$$\mathcal{O}_n = \mathcal{V}$$
 iff.

(a) D_{n,k}[V] is a k-surjection.
(b) D_{n,k}[V^c] is acyclic.

$$\blacksquare \mathbb{P} \{ \mathcal{O}_n = \mathcal{V} \} = \mathbb{P} \{ (a) \} \mathbb{P} \{ (b) \}.$$

Theorem 3

As $n \to \infty$,

$$\frac{|\mathcal{O}_n|-\nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$$

S_v (the spectrum of v) is the set of vertices the are reachable from v.

- S_v (the spectrum of v) is the set of vertices the are reachable from v.
- Let $\mathcal{S}'_{v} \equiv \mathcal{S}_{v} \cap \mathcal{G}_{n}^{c}$.

- S_v (the spectrum of v) is the set of vertices the are reachable from v.
- Let $\mathcal{S}'_{v} \equiv \mathcal{S}_{v} \cap \mathcal{G}_{n}^{c}$.
- Grusho showed that

$$\frac{|\mathcal{S}_1|-\nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$$

- S_v (the spectrum of v) is the set of vertices the are reachable from v.
- Let $\mathcal{S}'_{v} \equiv \mathcal{S}_{v} \cap \mathcal{G}_{n}^{c}$.
- Grusho showed that

$$\frac{|\mathcal{S}_1|-\nu_k n}{\sigma_k \sqrt{n}} \stackrel{d}{\to} \mathcal{Z}.$$

• And $|\mathcal{S}'_1| = O_p(1)$.

Theorem 4

. . .

1 Whp every S'_v induces either a tree or

Figure 6 : The tree-like structure of spectra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 4

 Whp every S'_v induces either a tree or a tree plus an extra arc.

Figure 6 : The tree-like structure of spectra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 4

- Whp every S'_v induces either a tree or a tree plus an extra arc.
- 2 Let $S_n \equiv \max_{v \in \mathcal{G}_n^c} |\mathcal{S}'_v|$. Then

$$\frac{S_n}{\log n} \xrightarrow{p} \frac{1}{\log(1/\lambda_k)}.$$

Figure 6 : The tree-like structure of spectra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem 4

 Whp every S'_v induces either a tree or a tree plus an extra arc.

2 Let
$$S_n \equiv \max_{v \in \mathcal{G}_n^c} |\mathcal{S}'_v|$$
. Then

$$\frac{S_n}{\log n} \xrightarrow{P} \frac{1}{\log(1/\lambda_k)}.$$
3 Let $W_n \equiv \max_{v \in \mathcal{G}_n^c} \operatorname{dist}(v, \mathcal{G}_n).$ Then
$$\frac{W_n}{\log_k \log n} \xrightarrow{P} 1.$$

Figure 6 : The tree-like structure of spectra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our result 3 — Spectra outside the giant (continued)

Theorem 4

4 Let

 $D_n \equiv \max_{v \in \mathcal{G}_n^c} \max_{u \in \mathcal{S}_v'} \operatorname{dist}(v, u).$ Then

$$\frac{D_n}{\log n} \xrightarrow{p} \frac{1}{\log(1/k\mu_k)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our result 3 — Spectra outside the giant (continued)

Theorem 4

4 Let

 $D_n \equiv \max_{v \in \mathcal{G}_n^c} \max_{u \in \mathcal{S}_v^{\prime}} \operatorname{dist}(v, u).$ Then

$$\frac{D_n}{\log n} \xrightarrow{p} \frac{1}{\log(1/k\mu_k)}.$$

5 Let M_n be the length of the longest path in $\mathcal{D}_{n,k}[\mathcal{G}_n^c]$. Then

$$\frac{M_n}{\log n} \xrightarrow{p} \frac{1}{\log(1/k\mu_k)}.$$

To find a $S'_{\nu} = \Omega(\log n)$:

To find a $\mathcal{S}'_{\nu} = \Omega(\log n)$:

• Explore the spectrum of one vertex.

Figure 8 : Try until success.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To find a $S'_{v} = \Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.

Figure 8 : Try until success.

To find a $\mathcal{S}'_{\nu} = \Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.

 $\begin{array}{ccc} S_1' & S_2' \\ & & & & & \\ & & & & & \\ \end{array}$

Figure 8 : Try until success.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

To find a $\mathcal{S}'_{\nu} = \Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.

Figure 8 : Try until success.

To find a $S'_v = \Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.
- Until we find a large one.

Figure 8 : Try until success.

To find a $S'_v = \Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.
- Until we find a large one.
- The probability to succeed in one trial is small.

To find a $\mathcal{S}'_{\nu} = \Omega(\log n)$:

- Explore the spectrum of one vertex.
- If it is large enough, we succeed.
- Otherwise, we try again.
- And again.
- Until we find a large one.
- The probability to succeed in one trial is small.
- The probability to eventually succeed goes to one.

Figure 8 : Try until success.

Our result 4 - Strong connectivity

1 Recall that $|\mathcal{G}_n| \approx \nu_k n$.

Our result 4 - Strong connectivity

1 Recall that
$$|\mathcal{G}_n| \approx \nu_k n$$
.
2 As $\nu_k \ge 1 - e^{-k + O(1)}$, $\nu_k \to 1$ as $k \to \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- **1** Recall that $|\mathcal{G}_n| \approx \nu_k n$.
- 2 As $\nu_k \ge 1 e^{-k + O(1)}$, $\nu_k \to 1$ as $k \to \infty$.
- 3 When does the whole digraph get strongly connected?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- **1** Recall that $|\mathcal{G}_n| \approx \nu_k n$.
- 2 As $\nu_k \ge 1 e^{-k + O(1)}$, $\nu_k \to 1$ as $k \to \infty$.
- 3 When does the whole digraph get strongly connected?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 Recall that
$$|\mathcal{G}_n| \approx \nu_k n$$
.

- 2 As $\nu_k \ge 1 e^{-k + O(1)}$, $\nu_k \to 1$ as $k \to \infty$.
- 3 When does the whole digraph get strongly connected?

Theorem 5 (Phase transition in strong connectivity)

1 If $k - \log n \to -\infty$, then whp $\mathcal{D}_{n,k}$ is not strongly connected.

2 If $k - \log n \to \infty$, then whp $\mathcal{D}_{n,k}$ is strongly connected.

- **1** Vertex connectivity of \mathcal{G}_n .
- **2** Extends central limit laws to simple digraphs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- **1** Vertex connectivity of \mathcal{G}_n .
- 2 Extends central limit laws to simple digraphs.
- **3** Generalize the model to non-regular out-degree sequence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **1** Vertex connectivity of \mathcal{G}_n .
- 2 Extends central limit laws to simple digraphs.
- 3 Generalize the model to non-regular out-degree sequence.
- Generating a uniform random surjection from $\{1, ..., m\}$ to $\{1, ..., n\}$ for arbitrary m = m(n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,

- The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,
- 2 and Denis Thérien for pointing out the importance of the model,

- The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,
- 2 and Denis Thérien for pointing out the importance of the model,
- 3 and Ross Kang for suggesting me to give this talk.

-

- The authors thank Laura Eslava, Hamed Hatami, Guillem Perarnau, Bruce Reed, Henning Sulzbach and Yelena Yuditsky for valuable comments on this work,
- 2 and Denis Thérien for pointing out the importance of the model,
- 3 and Ross Kang for suggesting me to give this talk.
- 4 Thanks for listening!

References

- L. Addario-Berry, B. Balle, and G. Perarnau. Diameter and Stationary Distribution of Random *r*-out Digraphs. *ArXiv e-prints*, 2015.
- [2] D. Angluin and D. Chen. Random walks on random uni-regular graphs. 2015.
- [3] A. Carayol and C. Nicaud. Distribution of the number of accessible states in a random deterministic automaton. In 29th International Symposium on Theoretical Aspects of Computer Science, volume 14 of Leibniz International Proceedings in Informatics, 194–205. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.
- [4] A. A. Grusho. Limit distributions of certain characteristics of random automaton graphs. *Mathematical Notes of the Academy of Sciences of the USSR*, 14(1):633–637, 1973.

(日) (日) (日) (日) (日) (日)