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endpoint independently and 1 o > DZ
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m Assume k > 2. Figure 1 : A 2-out digraph with 5
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Figure 2 : Since vy > 1/2, G, is the
largest scc. We call G, the giant.
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Recent research on D), «

m In 2012, Carayol and Nicaud [3] reproved some of Grusho's
results.

m In 2015, Addario-Berry, Balle, and Perarnau [1] proved that
the diameter and the typical distance of D, x, rescaled by
log n, converge in probability to constants.

m Also in 2014, Angluin and Chen [2] studied the mixing time of
simple random walk on D, .
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Let G5 = [n] \ Gn. Let D, «[G5] be the sub-digraph induced by Gf.

Let L, be the length of the longest cycle in Dy, «[GS]. Then
L, = Op(1).
Let C, be the number of cycles in D, [G5]. Then
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The intuition of Theorem 2

m When two cycles share
vertices, they contain fewer
vertices than arcs.

m The expected number of this
type of sub-digraphs goes to
zero.

m Let C be the set of all
possible cycles. Then
C" = Zaec 1[a]-

m The dependence between
these indicators is very
small.

Figure 3 : Two cycles sharing one
vertex.
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The three layers of D, «

m D, can be divided into
three layers:

m Center — G,
m Middle — O, \ G,
m Outer — O
m O, induces the maximum gn
sub-digraph in which
in-degree > 1.

m We call O, the one-in-core.

Figure 4 1 Three layers of D,
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Our result 2 — A new proof of Theorem 1

= By Theorem 2, who [0, =0
is small. As n — oo

m In fact |O,] — |G| = O,(1). '

m Thus Theorem 3 implies the M 4 =
central limit law of |G|, okV/n

m O, =V iff.
(a) Dpk[V] is a k-surjection.
(b) Dpi[V€] is acyclic.

= P{O, =V} =P{(a)} P{(b)}.
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m S, (the spectrum of v) is the s
set of vertices the are reachable
from v.

mlet S, =S, NGS.
m Grusho showed that
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= And |S]| = 0,(1).

Figure 5 :  The spectrum of a
vertex.
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Our result 3 — Spectra outside the giant

v
Whp every S|, induces either a tree or d1€t (v,Gn) —
a tree plus an extra arc.
Let S, = maxyege Sy |. Then

S », 1
logn  log(1/A\k)

Let W, = maxcge dist(v,G,). Then
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Figure 6 :  The tree-like
structure of spectra.
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Let
D, = max,ege max,es; dist(v, u).
Then
D, Ly 1
fog n " Tog(1/kpx)’

Let M,, be the length of the longest
path in Dy, [G]. Then

My p 1
logn  log(1/kpk)’

max dist(v, u)
u€S)

2

Figure 7 : The tree-like
structure of spectra.
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Proof technique — Try until success

To find a S|, = Q(log n):

Explore the spectrum of one
vertex.

If it is large enough, we
succeed.

Otherwise, we try again.
And again.
Until we find a large one.

The probability to succeed
in one trial is small.

The probability to eventually
succeed goes to one.

SIS, 8L S, ae-- S

ArA

Figure 8 :

A

Q(logn)

Try until success.
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Our result 4 — Strong connectivity

Recall that |G,| &~ vkn.
Asvp >1—e k0 1 51 as k — .
When does the whole digraph get strongly connected?

Theorem 5 (Phase transition in strong connectivity)

If k —log n — —o0, then whp D, ) is not strongly connected.
If k —logn — oo, then whp Dy,  is strongly connected.
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Some open questions

Vertex connectivity of G,,.
Extends central limit laws to simple digraphs.
Generalize the model to non-regular out-degree sequence.

Generating a uniform random surjection from {1,..., m} to
{1,..., n} for arbitrary m = m(n).
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